Ets-1 mediates upregulation of Mcl-1 downstream of XBP-1 in human melanoma cells upon ER stress
Ets-1 mediates upregulation of Mcl-1 downstream of XBP-1 in human melanoma cells upon ER stress
Past studies have shown that upregulation of the anti-apoptotic Bcl-2 family protein Mcl-1 is a major adaptive mechanism of melanoma cells to endoplasmic reticulum (ER) stress, and has an important role in resistance of the cells to apoptosis. In this study, we show that the increase in transcription of Mcl-1 in melanoma cells triggered by pharmacological ER stress inducers is mediated by the transcription factor Ets-1. By incremental deletion analysis of the Mcl-1 promoter, we identified a DNA fragment containing an Ets-1 binding site that is transcriptionally responsive to ER stress. Mutations in the Ets-1 binding site or knockdown of Ets-1 inhibited the increase in Mcl-1, indicating that Ets-1 has a critical role in transcriptional upregulation of Mcl-1. Similar to Mcl-1, Ets-1 was transcriptionally upregulated by ER stress. This was mediated by the IRE1α/XBP-1 branch of the unfolded protein response, as upregulation of Ets-1 was inhibited in melanoma cell lines deficient in IRE1α or XBP-1 established by short hairpin RNA knockdown. Activation of the PI3k/Akt pathway downstream of XBP-1 was also involved, in that inhibition of the pathway blocked upregulation of Ets-1. Inhibition of Ets-1 enhanced ER stress-induced apoptosis in melanoma cell lines and in fresh melanoma isolates, recapitulating the effect of inhibition of Mcl-1. These results reveal a key mechanism by which Mcl-1 is transcriptionally upregulated in melanoma cells by ER stress, and identify Ets-1 as a potential target for inhibition to sensitize melanoma cells to apoptosis.
- University of Newcastle Australia Australia
- Calvary Mater Newcastle Hospital Australia
570, Chromatin Immunoprecipitation, Transcription, Genetic, XBP-1, Blotting, Western, Apoptosis, Electrophoretic Mobility Shift Assay, Regulatory Factor X Transcription Factors, Endoplasmic Reticulum, Polymerase Chain Reaction, Ets-1, Proto-Oncogene Protein c-ets-1, Cell Line, Tumor, melanoma, Humans, Promoter Regions, Genetic, Melanoma, DNA Primers, Base Sequence, Mc1-1, Up-Regulation, DNA-Binding Proteins, Proto-Oncogene Proteins c-bcl-2, endoplasmic reticulum stress, Myeloid Cell Leukemia Sequence 1 Protein, Original Article, Transcription Factors
570, Chromatin Immunoprecipitation, Transcription, Genetic, XBP-1, Blotting, Western, Apoptosis, Electrophoretic Mobility Shift Assay, Regulatory Factor X Transcription Factors, Endoplasmic Reticulum, Polymerase Chain Reaction, Ets-1, Proto-Oncogene Protein c-ets-1, Cell Line, Tumor, melanoma, Humans, Promoter Regions, Genetic, Melanoma, DNA Primers, Base Sequence, Mc1-1, Up-Regulation, DNA-Binding Proteins, Proto-Oncogene Proteins c-bcl-2, endoplasmic reticulum stress, Myeloid Cell Leukemia Sequence 1 Protein, Original Article, Transcription Factors
15 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).63 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
