Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2006
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2006 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Laminar organization of the early developing anterior hypothalamus

Authors: Francine Boucher; Aurore Caqueret; Jacques L. Michaud;

Laminar organization of the early developing anterior hypothalamus

Abstract

The bHLH-PAS transcription factor SIM1 is required for the development of neurons of the anterior hypothalamus (AH). In order to dissect this developmental program, we compared gene expression in the AH of E12.5 Sim1(+/+) and Sim1(-/-) littermates using an oligonucleotide-based microarray. Our analysis identified 48 genes that were downregulated and 8 genes that were upregulated. We examined the expression pattern of 10 of the identified genes--Cart, Cbln1, Alcam, Unc-13c, Rgs4, Lnx4, Irx3, Sax1, Ldb2 and Neurod6--by in situ hybridization in E12.5 embryos. All of these genes are expressed in domains that are contained within that of Sim1 and their expression is changed in Sim1(-/-) embryos as predicted by the microarray analysis. Classical dating studies have established that the hypothalamus follows an "outside-in" pattern of neurogenesis, with neurons of the lateral hypothalamus being born before the medial ones. Analysis of the genes identified in this microarray study showed that the developing AH is characterized by different layers of gene expression that most likely correspond to distinct waves of neurogenesis. In addition, our analysis suggests that Sim1 function is required for the production or the survival of postmitotic neurons as well as for correct positioning of AH neurons.

Related Organizations
Keywords

Mice, Knockout, Neurons, Gene Expression Profiling, Hypothalamus, Spiral Lamina, Cell Differentiation, Cell Biology, Development, Microarray, Models, Biological, Mice, Inbred C57BL, Repressor Proteins, Mice, Hypothalamus, Anterior, Basic Helix-Loop-Helix Transcription Factors, Animals, Sim1, Transcription factor, Molecular Biology, Developmental Biology, Body Patterning, Oligonucleotide Array Sequence Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
52
Top 10%
Top 10%
Top 10%
hybrid