Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cellular ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cellular Biochemistry
Article . 2009 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Hypoxia‐inducible factors 1α and 2α exert both distinct and overlapping functions in long bone development

Authors: Ryan C. Riddle; Thomas L. Clemens; Chao Wan; Xuemei Cao; Mary L. Bouxsein; Stacy Shomento; Marie Claude Faugere;

Hypoxia‐inducible factors 1α and 2α exert both distinct and overlapping functions in long bone development

Abstract

AbstractThe hypoxia‐inducible factors have recently been identified as critical regulators of angiogenic–osteogenic coupling. Mice overexpressing HIFα subunits in osteoblasts produce abundant VEGF and develop extremely dense, highly vascularized long bones. In this study, we investigated the individual contributions of Hif‐1α and Hif‐2α in angiogenesis and osteogenesis by individually disrupting each Hifα gene in osteoblasts using the Cre‐loxP method. Mice lacking Hif‐1α demonstrated markedly decreased trabecular bone volume, reduced bone formation rate, and altered cortical bone architecture. By contrast, mice lacking Hif‐2α had only a modest decrease in trabecular bone volume. Interestingly, long bone blood vessel development measured by angiography was decreased by a similar degree in both ΔHif‐1α and ΔHif‐2α mice suggesting a common role for these Hifα subunits in skeletal angiogenesis. In agreement with this idea, osteoblasts lacking either Hif‐1α or Hif‐2α had profound reductions in VEGF mRNA expression but only the loss of Hif‐1α impaired osteoblast proliferation. These findings indicate that expression of both Hif‐1α and Hif‐2α by osteoblasts is required for long bone development. We propose that both Hif‐1α and Hif‐2α function through cell non‐autonomous modes to promote vascularization of bone and that Hif‐1α also promotes bone formation by exerting direct actions on the osteoblast. J. Cell. Biochem. 109: 196–204, 2010. © 2009 Wiley‐Liss, Inc.

Keywords

Mice, Knockout, Bone Development, Osteoblasts, Reverse Transcriptase Polymerase Chain Reaction, Neovascularization, Physiologic, Cell Differentiation, Hypoxia-Inducible Factor 1, alpha Subunit, Bone and Bones, Mice, Basic Helix-Loop-Helix Transcription Factors, Animals, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    103
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
103
Top 10%
Top 10%
Top 10%