Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Investigative Ophtha...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Investigative Ophthalmology & Visual Science
Article . 2013 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Assessing a Novel Depot Delivery Strategy for Noninvasive Administration of VEGF/PDGF RTK Inhibitors for Ocular Neovascular Disease

Authors: Robbie, Scott J.; Lundh von Leithner, Peter; Ju, Meihua; Lange, Clemens; King, Andrew G.; Adamson, Peter; Lee, Dennis; +5 Authors

Assessing a Novel Depot Delivery Strategy for Noninvasive Administration of VEGF/PDGF RTK Inhibitors for Ocular Neovascular Disease

Abstract

Two noninvasive delivery strategies for VEGF/PDGF receptor tyrosine kinase inhibitors (RTKI) were explored that exploited uveal retention as a means for establishing an ocular drug depot: a single oral "loading" dose and topical administration.Melanin binding was confirmed by centrifugation and mass spectrometry. Ocular retention was examined in pigmented and albino rats. Ocular release kinetics were measured 3 to 28 days postdosing in pigmented rats. Microautoradiography was used to demonstrate retention of RTKI in the uveal tract. A uveal drug depot of pazopanib was created by a single oral dose prior to induction of laser choroidal neovascularization (CNV). Choroid/retinal pigmented epithelium (RPE) retention of a related RTKI with enhanced topical bioavailability, GW771806, was confirmed by bioanalytics, and its ability to regress CNV compared with pazopanib.Pazopanib and GW771806 directly bound melanin and were retained within the uveal tract of pigmented rats for weeks following a single oral dose. Pazopanib was undetectable systemically following a single oral administration prior to CNV induction, and reduced CNV as well as twice daily dosing. Topical ocular delivery of GW771806 at 5 mg/mL led to high choroidal/RPE exposure and significantly regressed CNV lesions; 2 mg/mL prevented lesion progression.Uveal retention of drugs such as pazopanib can be used to create a sustained-release depot. Topical GW771806 regressed CNV. These data indicate that topical or infrequent oral loading dose treatment with VEGF/PDGF RTKI retained in the choroid/RPE might allow noninvasive treatments for ocular neovascular disease.

Keywords

Melanins, Indazoles, Microscopy, Confocal, Administration, Topical, Administration, Oral, Angiogenesis Inhibitors, Choroidal Neovascularization, Rats, Mice, Inbred C57BL, Rats, Sprague-Dawley, Mice, Drug Delivery Systems, Pyrimidines, Animals, Autoradiography, Female, Rats, Long-Evans, Receptors, Platelet-Derived Growth Factor, Fluorescein Angiography, Half-Life

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Top 10%
Top 10%
Top 10%
gold