Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cell Science
Article
License: CC BY
Data sources: UnpayWall
Journal of Cell Science
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Identification of the Drosophila interband-specific protein Z4 as a DNA-binding zinc-finger protein determining chromosomal structure

Authors: Harald, Eggert; Andrej, Gortchakov; Harald, Saumweber;

Identification of the Drosophila interband-specific protein Z4 as a DNA-binding zinc-finger protein determining chromosomal structure

Abstract

The subdivision of polytene chromosomes into bands and interbands suggests a structural chromatin organization that is related to the formation of functional domains of gene expression. We made use of the antibody Z4 to gain insight into this level of chromosomal structure, as the Z4 antibody mirrors this patterning by binding to an antigen that is present in most interbands. The Z4 gene encodes a protein with seven zinc fingers, it is essential for fly development and acts in a dose-dependent manner on the development of several tissues. Z4 mutants have a dose-sensitive effect on wm4 position effect variegation with a haplo-suppressor and triplo-enhancer phenotype, suggesting Z4 to be involved in chromatin compaction. This assumption is further supported by the phenotype of Z4 mutant chromosomes, which show a loss of the band/interband pattern and are subject to an overall decompaction of chromosomal material. By co-immunoprecipitations we identified a novel chromo domain protein, which we named Chriz (Chromo domain protein interacting with Z4) as an interaction partner of Z4. Chriz localizes to interbands in a pattern that is identical to the Z4 pattern. These findings together with the result that Z4 binds directly to DNA in vitro strongly suggest that Z4 in conjunction with Chriz is intimately involved in the higher-order structuring of chromosomes.

Keywords

Chromosome Aberrations, Male, DNA, Complementary, Base Sequence, Chromosomal Proteins, Non-Histone, Molecular Sequence Data, Gene Dosage, Gene Expression Regulation, Developmental, Zinc Fingers, Chromosomes, Cell Line, Animals, Genetically Modified, DNA-Binding Proteins, Drosophila melanogaster, Mutation, Animals, Drosophila Proteins, Amino Acid Sequence, Eye Abnormalities, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    55
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
55
Top 10%
Top 10%
Top 10%
hybrid