Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Developmentarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Development
Article . 1994 . Peer-reviewed
Data sources: Crossref
Development
Article . 1994
versions View all 2 versions

The expression pattern of a novel gene encoding brain-fatty acid binding protein correlates with neuronal and glial cell development

Authors: A, Kurtz; A, Zimmer; F, Schnütgen; G, Brüning; F, Spener; T, Müller;

The expression pattern of a novel gene encoding brain-fatty acid binding protein correlates with neuronal and glial cell development

Abstract

ABSTRACT Fatty acid binding proteins (FABPs) are a multigene family of small intracellular proteins that bind hydrophobic ligands. In this report we describe the cloning and expression pattern of a novel member of this gene family that is specifically expressed in the developing and adult nervous system and thus was designated brain (B)-FABP. B-FABP is closely related to heart (H)-FABP with 67% amino acid identity. B-FABP expression was first detected at mouse embryonic day 10 in neuroepithelial cells and its pattern correlates with early neuronal differentiation. Upon further development, B-FABP was confined to radial glial cells and immature astrocytes. B-FABP mRNA and protein were found in glial cells of the peripheral nervous system such as satellite cells of spinal and cranial ganglia and ensheathing cells of the olfactory nerve layer from as early as embryonic day 11 until adulthood. In the adult mouse brain, B-FABP was found in the glia limitans, in radial glial cells of the hippocampal dentate gyrus and Bergman glial cells. These findings suggest a function of B-FABP during neurogenesis or neuronal migration in the developing nervous system. The partially overlapping expression pattern with that of cellular retinoid binding proteins suggests that B-FABP is involved in the metabo-lism of a so far unknown hydrophobic ligand with potential morphogenic activity during CNS development.

Keywords

Central Nervous System, Neurons, Base Sequence, Fatty Acids, Molecular Sequence Data, Gene Expression, Epithelial Cells, Mice, Inbred Strains, Nerve Tissue Proteins, Fatty Acid-Binding Proteins, Neoplasm Proteins, Mice, Animals, Amino Acid Sequence, Carrier Proteins, Fatty Acid-Binding Protein 7, Neuroglia

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    356
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
356
Top 1%
Top 1%
Top 1%