The H Subunit (Vma13p) of the Yeast V-ATPase Inhibits the ATPase Activity of Cytosolic V1 Complexes
pmid: 10781598
The H Subunit (Vma13p) of the Yeast V-ATPase Inhibits the ATPase Activity of Cytosolic V1 Complexes
V-ATPases are composed of a peripheral complex containing the ATP-binding sites, the V(1) sector, attached to a membrane complex containing the proton pore, the V(o) sector. In vivo, free, inactive V(1) and V(o) sectors exist in dynamic equilibrium with fully assembled, active V(1) V(o) complexes, and this equilibrium can be perturbed by changes in carbon source. Free V(1) complexes were isolated from the cytosol of wild-type yeast cells and mutant strains lacking V(o) subunit c (Vma3p) or V(1) subunit H (Vma13p). V(1) complexes from wild-type or vma3Delta mutant cells were very similar, and contained all previously identified yeast V(1) subunits except subunit C (Vma5p). These V(1) complexes hydrolyzed CaATP but not MgATP, and CaATP hydrolysis rapidly decelerated with time. V(1) complexes from vma13Delta cells contained all V(1) subunits except C and H, and had markedly different catalytic properties. The initial rate of CaATP hydrolysis was maintained for much longer. The complexes also hydrolyzed MgATP, but showed a rapid deceleration in hydrolysis. These results indicate that the H subunit plays an important role in silencing unproductive ATP hydrolysis by cytosolic V(1) complexes, but suggest that other mechanisms, such as product inhibition, may also play a role in silencing in vivo.
- State University of New York at Potsdam United States
- SUNY Upstate Medical University United States
Vacuolar Proton-Translocating ATPases, Binding Sites, Macromolecular Substances, Calcium-Transporting ATPases, Saccharomyces cerevisiae, Proton Pumps, Recombinant Proteins, Kinetics, Proton-Translocating ATPases, Adenosine Triphosphate, Cytosol, Ca(2+) Mg(2+)-ATPase, Cloning, Molecular, Gene Deletion
Vacuolar Proton-Translocating ATPases, Binding Sites, Macromolecular Substances, Calcium-Transporting ATPases, Saccharomyces cerevisiae, Proton Pumps, Recombinant Proteins, Kinetics, Proton-Translocating ATPases, Adenosine Triphosphate, Cytosol, Ca(2+) Mg(2+)-ATPase, Cloning, Molecular, Gene Deletion
11 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2008IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2002IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).153 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
