Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
Development
Article . 2005 . Peer-reviewed
Data sources: Crossref
Development
Article . 2007
versions View all 2 versions

Pelota controls self-renewal of germline stem cells by repressing a Bam-independent differentiation pathway

Authors: Xi, Rongwen; Doan, Choung; Liu, Dazhi; Xie, Ting;

Pelota controls self-renewal of germline stem cells by repressing a Bam-independent differentiation pathway

Abstract

In the Drosophila ovary, germline stem cell (GSC) self-renewal is controlled by both extrinsic and intrinsic factors. The Bmp signal from niche cells controls GSC self-renewal by directly repressing a Bam-dependent differentiation pathway in GSCs. pelota (pelo), which has been previously shown to be required for Drosophila male meiosis, was identified in our genetic screen as a dominant suppressor of the dppoverexpression-induced GSC tumor phenotype. In this study, we reveal the unexpected new role of Pelo in controlling GSC self-renewal by repressing a Bam-independent differentiation pathway. In pelo mutant ovaries, GSCs are lost rapidly owing to differentiation. Results from genetic mosaic analysis and germ cell-specific rescue show that it functions as an intrinsic factor to control GSC self-renewal. In pelo mutant GSCs, Bmp signaling activity detected by Dad-lacZ expression is downregulated,but bam expression is still repressed. Furthermore, bammutant germ cells are still able to differentiate into cystocytes without pelo function, indicating that Pelo is involved in repressing a Bam-independent differentiation pathway. Consistent with its homology to the eukaryotic translation release factor 1α, we show that Pelo is localized to the cytoplasm of the GSC. Therefore, Pelo controls GSC self-renewal by repressing a Bam-independent differentiation pathway possibly through regulating translation. As Pelo is highly conserved from Drosophilato mammals, it may also be involved in the regulation of adult stem cell self-renewal in mammals, including humans.

Keywords

Male, Cytoplasm, Stem Cells, Ovary, Mitosis, Nuclear Proteins, Germline stem cells, Cell Differentiation, Meiosis, Germ Cells, Oogenesis, Pelota, Differentiation, Protein Biosynthesis, Mutation, Bmp, Self-renewal, Animals, Drosophila Proteins, Drosophila, Female, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    72
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
72
Top 10%
Top 10%
Top 10%
bronze