Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Informatics in Medic...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Informatics in Medicine Unlocked
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Informatics in Medicine Unlocked
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Informatics in Medicine Unlocked
Article . 2020
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/pn...
Other literature type . 2020
Data sources: Datacite
https://dx.doi.org/10.60692/sr...
Other literature type . 2020
Data sources: Datacite
versions View all 7 versions

Engineering a novel subunit vaccine against SARS-CoV-2 by exploring immunoinformatics approach

هندسة لقاح جديد للوحدة الفرعية ضد فيروس كورونا 2 المرتبط بمتلازمة الجهاز التنفسي الحادة الوخيمة من خلال استكشاف نهج المعلوماتية المناعية
Authors: Bishajit Sarkar; Md. Asad Ullah; Yusha Araf; Mohammad Shahedur Rahman;

Engineering a novel subunit vaccine against SARS-CoV-2 by exploring immunoinformatics approach

Abstract

Alors que le nombre d'infections et de décès causés par la récente pandémie de COVID-19 augmente considérablement de jour en jour, les scientifiques se précipitent vers le développement de contre-mesures possibles pour lutter contre le virus mortel, le SRAS-CoV-2. Bien que de nombreux efforts aient déjà été mis en avant pour développer des vaccins potentiels, il est toutefois prouvé que la plupart d'entre eux ont des conséquences négatives. Par conséquent, dans cette étude, les méthodes immuno-informatiques ont été exploitées pour concevoir un nouveau vaccin sous-unitaire à base d'épitopes contre le SRAS-CoV-2, ciblant quatre protéines essentielles du virus, à savoir la glycoprotéine spike, la phosphoprotéine nucléocapside, la glycoprotéine membranaire et la protéine d'enveloppe. Les épitopes hautement antigéniques, non allergènes, non toxiques, non humains et 100% conservés (dans d'autres isolats de différentes régions du monde) ont été utilisés pour construire le vaccin. Au total, quatorze épitopes CTL et dix-huit épitopes HTL ont été utilisés pour construire le vaccin. Par la suite, plusieurs validations in silico, à savoir l'amarrage moléculaire, la simulation de la dynamique moléculaire (y compris les études RMSF et RMSD) et les études de simulation immunitaire, ont également été effectuées, prédisant que le vaccin conçu devrait être tout à fait sûr, efficace et stable dans l'environnement biologique. Enfin, des études de clonage in silico et d'adaptation des codons ont également été menées pour concevoir une stratégie de production de masse efficace du vaccin. Cependant, davantage d'études in vitro et in vivo sont nécessaires sur le vaccin prédit pour valider finalement son innocuité et son efficacité.

A medida que el número de infecciones y muertes causadas por la reciente pandemia de COVID-19 aumenta dramáticamente día a día, los científicos se apresuran a desarrollar posibles contramedidas para combatir el virus mortal, el SARS-CoV-2. Aunque ya se han realizado muchos esfuerzos para desarrollar posibles vacunas, se ha demostrado que la mayoría de ellas tienen consecuencias negativas. Por lo tanto, en este estudio, se explotaron métodos inmunoinformáticos para diseñar una nueva vacuna de subunidades basada en epítopos contra el SARS-CoV-2, dirigida a cuatro proteínas esenciales del virus, es decir, la glicoproteína pico, la fosfoproteína de la nucleocápside, la glicoproteína de membrana y la proteína de la envoltura. Los epítopos altamente antigénicos, no alergénicos, no tóxicos, no humanos y 100% conservados (en otros aislados de diferentes regiones del mundo) se utilizaron para construir la vacuna. En total, se utilizaron catorce epítopos de CTL y dieciocho epítopos de Htl para construir la vacuna. A partir de entonces, también se realizaron varias validaciones in silico, es decir, el acoplamiento molecular, la simulación de dinámica molecular (incluidos los estudios RMSF y RMSD) y los estudios de simulación inmune, que predijeron que la vacuna diseñada debería ser bastante segura, efectiva y estable dentro del entorno biológico. Finalmente, también se realizaron estudios de clonación in silico y adaptación de codones para diseñar una estrategia efectiva de producción en masa de la vacuna. Sin embargo, se requieren más estudios in vitro e in vivo sobre la vacuna prevista para validar finalmente su seguridad y eficacia.

As the number of infections and deaths caused by the recent COVID-19 pandemic is increasing dramatically day-by-day, scientists are rushing towards developing possible countermeasures to fight the deadly virus, SARS-CoV-2. Although many efforts have already been put forward for developing potential vaccines; however, most of them are proved to possess negative consequences. Therefore, in this study, immunoinformatics methods were exploited to design a novel epitope-based subunit vaccine against the SARS-CoV-2, targeting four essential proteins of the virus i.e., spike glycoprotein, nucleocapsid phosphoprotein, membrane glycoprotein, and envelope protein. The highly antigenic, non-allergenic, non-toxic, non-human homolog, and 100% conserved (across other isolates from different regions of the world) epitopes were used for constructing the vaccine. In total, fourteen CTL epitopes and eighteen HTL epitopes were used to construct the vaccine. Thereafter, several in silico validations i.e., the molecular docking, molecular dynamics simulation (including the RMSF and RMSD studies), and immune simulation studies were also performed which predicted that the designed vaccine should be quite safe, effective, and stable within the biological environment. Finally, in silico cloning and codon adaptation studies were also conducted to design an effective mass production strategy of the vaccine. However, more in vitro and in vivo studies are required on the predicted vaccine to finally validate its safety and efficacy.

مع تزايد عدد الإصابات والوفيات الناجمة عن جائحة COVID -19 الأخيرة بشكل كبير يومًا بعد يوم، يندفع العلماء نحو تطوير تدابير مضادة محتملة لمكافحة الفيروس القاتل، SARS - CoV -2. على الرغم من بذل العديد من الجهود بالفعل لتطوير لقاحات محتملة ؛ ومع ذلك، ثبت أن معظمها له عواقب سلبية. لذلك، في هذه الدراسة، تم استغلال طرق المعلوماتية المناعية لتصميم لقاح فرعي جديد قائم على الحواتم ضد فيروس كورونا 2 المرتبط بمتلازمة الجهاز التنفسي الحادة الوخيمة، يستهدف أربعة بروتينات أساسية للفيروس، أي البروتين السكري الشوكي، والبروتين الفوسفوري النووي، والبروتين السكري الغشائي، والبروتين المغلف. تم استخدام القمم اللاصقة عالية المستضد، وغير المسببة للحساسية، وغير السامة، وغير البشرية، والمحفوظة بنسبة 100 ٪ (عبر عزلات أخرى من مناطق مختلفة من العالم) لبناء اللقاح. في المجموع، تم استخدام أربعة عشر حواتم CTL وثمانية عشر حواتم HTL لبناء اللقاح. بعد ذلك، تم إجراء العديد من عمليات التحقق من صحة السيليكو، أي الالتحام الجزيئي، ومحاكاة الديناميكيات الجزيئية (بما في ذلك دراسات RMSF و RMSD)، ودراسات المحاكاة المناعية التي تنبأت بأن اللقاح المصمم يجب أن يكون آمنًا وفعالًا ومستقرًا تمامًا داخل البيئة البيولوجية. وأخيرًا، أجريت أيضًا دراسات في استنساخ السيليكو والتكيف مع الكودون لتصميم استراتيجية فعالة للإنتاج الضخم للقاح. ومع ذلك، هناك حاجة إلى المزيد من الدراسات في المختبر وفي الجسم الحي على اللقاح المتوقع للتحقق أخيرًا من سلامته وفعاليته.

Keywords

Radiology, Nuclear Medicine and Imaging, Therapeutic Antibodies: Development, Engineering, and Applications, Computer applications to medicine. Medical informatics, Immunology, R858-859.7, Health Informatics, Prediction of Peptide-MHC Binding Affinity, Gene, Article, Computational biology, Biochemistry, Genetics and Molecular Biology, Virology, Health Sciences, Genetics, Vaccine designing, Molecular Biology, Biology, SARS-CoV-2, FOS: Clinical medicine, In silico, COVID-19, Life Sciences, Immunoinformatics, Protein subunit, Antigen, FOS: Biological sciences, Medicine, Epitope, Glycoprotein

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Average
Top 10%
Green
gold