Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genes & Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genes & Development
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Slik Sterile-20 kinase regulates Moesin activity to promote epithelial integrity during tissue growth

Authors: David R, Hipfner; Nadine, Keller; Stephen M, Cohen;

Slik Sterile-20 kinase regulates Moesin activity to promote epithelial integrity during tissue growth

Abstract

The Drosophila Sterile-20 kinase Slik promotes tissue growth during development by stimulating cell proliferation and by preventing apoptosis. Proliferation within an epithelial sheet requires dynamic control of cellular architecture. Epithelial integrity fails in slik mutant imaginal discs. Cells leave the epithelium and undergo apoptosis. The abnormal behavior of slik mutant cells is due to failure to phosphorylate and activate Moesin, which leads to excess Rho1 activity. This is distinct from Slik's effects on cell proliferation, which are mediated by Raf. Thus Slik acts via distinct pathways to coordinate cell proliferation with epithelial cell behavior during tissue growth.

Related Organizations
Keywords

rho GTP-Binding Proteins, Saccharomyces cerevisiae Proteins, Microvilli, Cell Survival, Microfilament Proteins, Intracellular Signaling Peptides and Proteins, Apoptosis, Cell Differentiation, Epithelial Cells, Protein Serine-Threonine Kinases, MAP Kinase Kinase Kinases, Actins, Larva, Mutation, Animals, Drosophila Proteins, Wings, Animal, Drosophila, Phosphorylation, Cell Division

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    91
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
91
Top 10%
Top 10%
Top 10%
Published in a Diamond OA journal