SRp38 Regulates Alternative Splicing and Is Required for Ca2+ Handling in the Embryonic Heart
SRp38 Regulates Alternative Splicing and Is Required for Ca2+ Handling in the Embryonic Heart
SRp38 is an atypical SR protein splicing regulator. To define the functions of SRp38 in vivo, we generated SRp38 null mice. The majority of homozygous mutants survived only until E15.5 and displayed multiple cardiac defects. Evaluation of gene expression profiles in the SRp38(-/-) embryonic heart revealed a defect in processing of the pre-mRNA encoding cardiac triadin, a protein that functions in regulation of Ca(2+) release from the sarcoplasmic reticulum during excitation-contraction coupling. This defect resulted in significantly reduced levels of triadin, as well as those of the interacting protein calsequestrin 2. Purified SRp38 was shown to bind specifically to the regulated exon and to modulate triadin splicing in vitro. Extending these results, isolated SRp38(-/-) embryonic cardiomyocytes displayed defects in Ca(2+) handling compared with wild-type controls. Taken together, our results demonstrate that SRp38 regulates cardiac-specific alternative splicing of triadin pre-mRNA and, reflecting this, is essential for proper Ca(2+) handling during embryonic heart development.
- Columbia University United States
- Harvard University United States
- Jackson Laboratory United States
- New York University United States
- King’s University United States
Heart Defects, Congenital, 570, Cell-Separation, Molecular Sequence Data, RNA-Binding-Proteins, 610, Muscle Proteins, DEVBIO, Cell Cycle Proteins, Base-Sequence, Cell Separation, Transfection, Cell-Cycle-Proteins, RNA-Precursors, Gene-Expression-Regulation-Developmental, Mice, Animals, Edema, Myocytes, Cardiac, Molecular-Sequence-Data, Myocytes-Cardiac, Base Sequence, Neoplasm-Proteins, Gene Expression Regulation, Developmental, Heart, Exons, Embryo-Loss, Embryo, Mammalian, Heart-Defects-Congenital, Alternative Splicing, Liver, Embryo-Mammalian, Embryo Loss, Carrier-Proteins, RNA, Calcium, Muscle-Proteins, Repressor-Proteins, Carrier Proteins, Protein-Binding, Chickens, Developmental Biology
Heart Defects, Congenital, 570, Cell-Separation, Molecular Sequence Data, RNA-Binding-Proteins, 610, Muscle Proteins, DEVBIO, Cell Cycle Proteins, Base-Sequence, Cell Separation, Transfection, Cell-Cycle-Proteins, RNA-Precursors, Gene-Expression-Regulation-Developmental, Mice, Animals, Edema, Myocytes, Cardiac, Molecular-Sequence-Data, Myocytes-Cardiac, Base Sequence, Neoplasm-Proteins, Gene Expression Regulation, Developmental, Heart, Exons, Embryo-Loss, Embryo, Mammalian, Heart-Defects-Congenital, Alternative Splicing, Liver, Embryo-Mammalian, Embryo Loss, Carrier-Proteins, RNA, Calcium, Muscle-Proteins, Repressor-Proteins, Carrier Proteins, Protein-Binding, Chickens, Developmental Biology
64 Research products, page 1 of 7
- 2017IsRelatedTo
- 2005IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).91 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
