Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neurobiology of Dise...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neurobiology of Disease
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neurobiology of Disease
Article . 2010
Data sources: DOAJ
versions View all 3 versions

Cell-autonomous alteration of dopaminergic transmission by wild type and mutant (ΔE) TorsinA in transgenic mice

Authors: Michelle E. Page; Li Bao; Pierrette Andre; Joshua Pelta-Heller; Emily Sluzas; Pedro Gonzalez-Alegre; Alexey Bogush; +4 Authors

Cell-autonomous alteration of dopaminergic transmission by wild type and mutant (ΔE) TorsinA in transgenic mice

Abstract

Early onset torsion dystonia is an autosomal dominant movement disorder of variable penetrance caused by a glutamic acid, i.e. DeltaE, deletion in DYT1, encoding the protein TorsinA. Genetic and structural data implicate basal ganglia dysfunction in dystonia. TorsinA, however, is diffusely expressed, and therefore the primary source of dysfunction may be obscured in pan-neuronal transgenic mouse models. We utilized the tyrosine hydroxylase (TH) promoter to direct transgene expression specifically to dopaminergic neurons of the midbrain to identify cell-autonomous abnormalities. Expression of both the human wild type (hTorsinA) and mutant (DeltaE-hTorsinA) protein resulted in alterations of dopamine release as detected by microdialysis and fast cycle voltammetry. Motor abnormalities detected in these mice mimicked those noted in transgenic mice with pan-neuronal transgene expression. The locomotor response to cocaine in both TH-hTorsinA and TH-DeltaE-hTorsinA, in the face of abnormal extracellular DA levels relative to non-transgenic mice, suggests compensatory, post-synaptic alterations in striatal DA transmission. This is the first cell-subtype-specific DYT1 transgenic mouse that can serve to differentiate between primary and secondary changes in dystonia, thereby helping to target disease therapies.

Keywords

Dopamine, Microdialysis, Blotting, Western, DYT1, Neurosciences. Biological psychiatry. Neuropsychiatry, Mice, Transgenic, Motor Activity, Synaptic Transmission, Striatum, Mice, Animals, Neurons, Analysis of Variance, Immunohistochemistry, Corpus Striatum, Dystonia, TorsinA, Dystonic Disorders, Motor Skills, 3,4-Dihydroxyphenylacetic Acid, Tyrosine hydroxylase, RC321-571, Molecular Chaperones

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    68
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
68
Top 10%
Top 10%
Top 10%
gold