Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biology
Article . 2012 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions

Evidence for DNA-Binding Domain–Ligand-Binding Domain Communications in the Androgen Receptor

Authors: Christine, Helsen; Vanessa, Dubois; Annelien, Verfaillie; Jacques, Young; Mieke, Trekels; Renée, Vancraenenbroeck; Marc, De Maeyer; +1 Authors

Evidence for DNA-Binding Domain–Ligand-Binding Domain Communications in the Androgen Receptor

Abstract

DNA binding as well as ligand binding by nuclear receptors has been studied extensively. Both binding functions are attributed to isolated domains of which the structure is known. The crystal structure of a complete receptor in complex with its ligand and DNA-response element, however, has been solved only for the peroxisome proliferator-activated receptor γ (PPARγ)-retinoid X receptor α (RXRα) heterodimer. This structure provided the first indication of direct interactions between the DNA-binding domain (DBD) and ligand-binding domain (LBD). In this study, we investigated whether there is a similar interface between the DNA- and ligand-binding domains for the androgen receptor (AR). Despite the structural differences between the AR- and PPARγ-LBD, a combination of in silico modeling and docking pointed out a putative interface between AR-DBD and AR-LBD. The surfaces were subjected to a point mutation analysis, which was inspired by known AR mutations described in androgen insensitivity syndromes and prostate cancer. Surprisingly, AR-LBD mutations D695N, R710A, F754S, and P766A induced a decrease in DNA binding but left ligand binding unaffected, while the DBD-residing mutations K590A, K592A, and E621A lowered the ligand-binding but not the DNA-binding affinity. We therefore propose that these residues are involved in allosteric communications between the AR-DBD and AR-LBD.

Keywords

Models, Molecular, Ligands, Protein Structure, Secondary, Cell Line, Protein Structure, Tertiary, DNA-Binding Proteins, Receptors, Androgen, COS Cells, Chlorocebus aethiops, Mutation, Animals, Protein Multimerization, Crystallization, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Top 10%
Top 10%
Top 10%
bronze
Related to Research communities
Cancer Research