Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The International Jo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The International Journal of Biochemistry & Cell Biology
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Cholesterol rich lipid raft microdomains are gateway for acute phase protein, SERPINA1

Authors: Devipriya, Subramaniyam; Huiping, Zhou; Min, Liang; Tobias, Welte; Ravi, Mahadeva; Sabina, Janciauskiene;

Cholesterol rich lipid raft microdomains are gateway for acute phase protein, SERPINA1

Abstract

Cholesterol is the most abundant lipid component of the plasma membrane, and thus the equilibrium between free cholesterol and raft cholesterol act as a determinant of raft function and cell signalling. The mechanisms that regulate the lipid raft cholesterol levels are largely unknown. Here we demonstrate that SERPINA1 (alpha1-antitrypsin), an acute phase protein and the classical neutrophil elastase inhibitor, is localized within lipid rafts in primary human monocytes in vitro. SERPINA1 association with monocytes is inhibited by cholesterol depleting/efflux-stimulating agents (nystatin, filipin, MbetaCD (methyl-beta-cyclodextrin) and oxidized low-density lipoprotein (oxLDL) and conversely, enhanced by free cholesterol. Furthermore, SERPINA1/monocyte association per se depletes lipid raft cholesterol as characterized by the activation of extracellular signal-regulated kinase 2, formation of cytosolic lipid droplets, and a complete inhibition of oxLDL uptake by monocytes. Our findings for the first time highlight that the entry and cell association of SERPINA1 is dependent on lipid raft cholesterol and that SERPINA1 depletes lipid raft cholesterol.

Keywords

Electrophoresis, Blotting, Western, Monocytes, Cell Line, Cholesterol, Membrane Microdomains, alpha 1-Antitrypsin, Receptors, Complement 3b, Humans, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%