Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neurosciencearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuroscience
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2008
Data sources: CNR ExploRA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2008
Data sources: IRIS Cnr
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuroscience
Article . 2008
versions View all 5 versions

ZPLD1 gene is disrupted in a patient with balanced translocation that exhibits cerebral cavernous malformations

Authors: Gianfrancesco F; Esposito T; Penco S; Maglione V; Liquori CL; Patrosso MC; Zuffardi O; +3 Authors

ZPLD1 gene is disrupted in a patient with balanced translocation that exhibits cerebral cavernous malformations

Abstract

The past few years have seen rapid advances in our understanding of the genetics and molecular biology of cerebral cavernous malformations (CCM) with the identification of the CCM1, CCM2, and CCM3 genes. Recently, we have recruited a patient with an X/3 balanced translocation that exhibits CCM. By fluorescent in situ hybridization analysis, sequence analysis tools and database mining procedures, we refined the critical region to an interval of 200-kb and identified the interrupted ZPLD1 gene. We detected that the mRNA expression level of ZPLD1 gene is consistently decreased 2.5-fold versus control (P=0.0006) with allelic loss of gene expression suggesting that this protein may be part of the complex signaling pathway implicated in CCM formation.

Keywords

Adult, Hemangioma, Cavernous, Central Nervous System, KRIT1, PDCD10, 610, MGC4607, Primary Ovarian Insufficiency, Translocation, Genetic, cerebral cavernous malformations, Cell Line, X Chromosome Inactivation, 616, "ANGIOMI CAVERNOSI", Humans, RNA, Messenger, Databases, Protein, ZPLD1, Membrane Proteins, Chromosome Breakage, Magnetic Resonance Imaging, "TRASLOCAZIONI BILANCIATE", Phenotype, "GENI", Leukocytes, Mononuclear, Female, Chromosomes, Human, Pair 3, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%