Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
http://dx.doi.org/10.1073/pnas...
Article . 2014 . Peer-reviewed
Data sources: SNSF P3 Database
Proceedings of the National Academy of Sciences
Article . 2014 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

A new tubulin-binding site and pharmacophore for microtubule-destabilizing anticancer drugs

Authors: Prota Andrea E.; Bargsten Katja; Fernando Diaz J.; Marsh May; Cuevas Carmen; Liniger Marc; Neuhaus Christian; +3 Authors

A new tubulin-binding site and pharmacophore for microtubule-destabilizing anticancer drugs

Abstract

Significance Microtubules are dynamic protein filaments assembled from tubulin subunits, which play a key role for cell division. Ligands that target microtubules and affect their dynamics belong to the most successful classes of chemotherapeutic drugs against cancer by inhibiting cell proliferation. Here we have analyzed three structurally unrelated drugs that destabilize microtubules, using X-ray crystallography. The data reveal a new tubulin-binding site for these drugs, which renders their mechanism of action distinct from that of other types of microtubule assembly inhibitors. Similar key interactions with tubulin are observed for all three ligands, thus defining a common pharmacophore. Our results offer an opportunity for the rational design of potent tubulin modulators for the development of more efficient cancer therapies.

Keywords

Antibiotics, Antineoplastic, Binding Sites, Clinical Trials, Phase I as Topic, Breast Neoplasms, Crystallography, X-Ray, Antineoplastic Agents, Phytogenic, Microtubules, Tubulin Modulators, Pyrones, Tubulin, Polyketides, Animals, Humans, Cattle, Female, Maytansine, Macrolides

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    252
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
252
Top 1%
Top 10%
Top 1%
bronze