A Novel Neuron-Enriched Homolog of the Erythrocyte Membrane Cytoskeletal Protein 4.1
A Novel Neuron-Enriched Homolog of the Erythrocyte Membrane Cytoskeletal Protein 4.1
We report the molecular cloning and characterization of 4.1N, a novel neuronal homolog of the erythrocyte membrane cytoskeletal protein 4.1 (4.1R). The 879 amino acid protein shares 70, 36, and 46% identity with 4.1R in the defined membrane-binding, spectrin-actin–binding, and C-terminal domains, respectively. 4.1N is expressed in almost all central and peripheral neurons of the body and is detected in embryonic neurons at the earliest stage of postmitotic differentiation. Like 4.1R, 4.1N has multiple splice forms as evidenced by PCR and Western analysis. Whereas the predominant 4.1N isoform identified in brain is ∼135 kDa, a smaller 100 kDa isoform is enriched in peripheral tissues. Immunohistochemical studies using a polyclonal 4.1N antibody revealed several patterns of neuronal staining, with localizations in the neuronal cell body, dendrites, and axons. In certain neuronal locations, including the granule cell layers of the cerebellum and dentate gyrus, a distinct punctate-staining pattern was observed consistent with a synaptic localization. In primary hippocampal cultures, mouse 4.1N is enriched at the discrete sites of synaptic contact, colocalizing with the postsynaptic density protein of 95 kDa (a postsynaptic marker) and glutamate receptor type 1 (an excitatory postsynaptic marker). By analogy with the roles of 4.1R in red blood cells, 4.1N may function to confer stability and plasticity to the neuronal membrane via interactions with multiple binding partners, including the spectrin-actin–based cytoskeleton, integral membrane channels and receptors, and membrane-associated guanylate kinases.
- University of California, Berkeley United States
- Johns Hopkins University United States
- Lawrence Berkeley National Laboratory United States
- Johns Hopkins Medicine United States
Neurons, Molecular Sequence Data, Neuropeptides, Membrane Proteins, Cytoskeletal Proteins, Mice, Animals, Humans, Tissue Distribution, Amino Acid Sequence, RNA, Messenger, Cloning, Molecular
Neurons, Molecular Sequence Data, Neuropeptides, Membrane Proteins, Cytoskeletal Proteins, Mice, Animals, Humans, Tissue Distribution, Amino Acid Sequence, RNA, Messenger, Cloning, Molecular
10 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).136 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
