Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Endocrinologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Endocrinology
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DIGITAL.CSIC
Article . 2013 . Peer-reviewed
Data sources: DIGITAL.CSIC
Endocrinology
Article . 2009 . Peer-reviewed
Data sources: Crossref
Endocrinology
Article . 2009
versions View all 4 versions

Residues K128, 132, and 134 in the Thyroid Hormone Receptor-α Are Essential for Receptor Acetylation and Activity

Authors: Sánchez-Pacheco, Aurora; Martínez-Iglesias, Olaia; Méndez-Pertuz, Marinela; Aranda, Ana;

Residues K128, 132, and 134 in the Thyroid Hormone Receptor-α Are Essential for Receptor Acetylation and Activity

Abstract

The thyroid hormone receptor (TR)-α is a nuclear receptor that mediates both transrepression and ligand-dependent transactivation. Here we show that TRα is posttranslationally modified by acetylation in response to its own ligand (T3). Acetylation increases binding to DNA. Using mutagenesis, we identified three conserved lysine residues in the carboxi-terminal extension (CTE) of the DNA binding domain that are targets of the cAMP-response element-binding protein acetyltransferase. Substitution of these lysines by arginines in TRα decreased ligand binding affinity and precluded ligand-dependent release of corepressors and recruitment of coactivators. The acetylation TRα mutant lost the ability to transactivate even at high T3 concentrations and acts as a dominant-negative inhibitor of wild-type TR activity. In addition, whereas native TRα interferes with AP-1 function, the mutant is unable to mediate transrepression. Finally, TRα suppresses NIH-3T3 fibroblast transformation by the Ras oncogene both in a ligand-dependent and -independent manner, but the CTE mutant is unable to mediate ligand-dependent repression of transformation. These results reveal a key role for the CTE region on acetylation, ligand affinity, transactivation, transrepression, and antitransforming properties of TRα.

Keywords

Transcriptional Activation, Amino Acid Motifs, Acetylation, Mice, Cell Transformation, Neoplastic, Amino Acid Substitution, NIH 3T3 Cells, Animals, Humans, Amino Acid Sequence, HeLa Cells, Protein Binding, Thyroid Hormone Receptors alpha

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 37
    download downloads 66
  • 37
    views
    66
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
23
Top 10%
Average
Top 10%
37
66
Green
bronze