Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cancer Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Research
Article
Data sources: UnpayWall
Cancer Research
Article . 2008 . Peer-reviewed
Data sources: Crossref
Cancer Research
Article . 2008
versions View all 2 versions

A Syngeneic Variance Library for Functional Annotation of Human Variation: Application toBRCA2

Authors: Tomas Hucl; Jonathan R. Brody; Myriam Gorospe; Eike Gallmeier; Carlo Rago; Scott E. Kern;

A Syngeneic Variance Library for Functional Annotation of Human Variation: Application toBRCA2

Abstract

AbstractThe enormous scope of natural human genetic variation is now becoming defined. To accurately annotate these variants, and to identify those with clinical importance, is often difficult to assess through functional assays. We explored systematic annotation by using homologous recombination to modify a native gene in hemizygous (wt/Δexon) human cancer cells, generating a novel syngeneic variance library (SyVaL). We created a SyVaL of BRCA2 variants: nondeleterious, proposed deleterious, deleterious, and of uncertain significance. We found that the null states BRCA2Δex11/Δex11 and BRCA2Δex11/Y3308X were deleterious as assessed by a loss of RAD51 focus formation on genotoxic damage and by acquisition of toxic hypersensitivity to mitomycin C and etoposide, whereas BRCA2Δex11/Y3308Y, BRCA2Δex11/P3292L, and BRCA2Δex11/P3280H had wild-type function. A proposed phosphorylation site at codon 3291 affecting function was confirmed by substitution of an acidic residue (glutamate, BRCA2Δex11/S3291E) for the native serine, but in contrast to a prior report, phosphorylation was dispensable (alanine, BRCA2Δex11/S3291A) for BRCA2-governed cellular phenotypes. These results show that SyVaLs offer a means to comprehensively annotate gene function, facilitating numerical and unambiguous readouts. SyVaLs may be especially useful for genes in which functional assays using exogenous expression are toxic or otherwise unreliable. They also offer a stable, distributable cellular resource for further research. [Cancer Res 2008;68(13):5023–30]

Keywords

Cell Survival, Mitomycin, Genes, BRCA2, Genetic Variation, Antineoplastic Agents, Models, Biological, Clone Cells, Drug Resistance, Neoplasm, Chromosomal Instability, Mutagenesis, Site-Directed, Humans, Rad51 Recombinase, Cells, Cultured, Tumor Stem Cell Assay, Cell Proliferation, Etoposide, Gene Library

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    73
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
73
Top 10%
Top 10%
Top 10%
bronze