Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Immun...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Immunology
Article . 2012 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
versions View all 2 versions

Marginal Zone B Cell Is a Major Source of Il-10 in Listeria monocytogenes Susceptibility

Authors: Chen-Cheng, Lee; John T, Kung;

Marginal Zone B Cell Is a Major Source of Il-10 in Listeria monocytogenes Susceptibility

Abstract

Abstract Rag-1–knockout (KO) mice are highly resistant to Listeria monocytogenes infection. The role played by the many Rag-1–dependent lymphocyte lineages was studied using a genetic approach in which each Rag-1–dependent lymphocyte lineage was eliminated one at a time. Only B cell-deficient Igh-KO mice displayed reduced bacterial load and improved survival upon Listeria infection. Listeria infection of Rag-1–KO and Il-10–KO hosts that had been adoptively transferred with wild-type marginal zone B (MZB) cells, but not follicular B cells, resulted in heightened bacterial load and increased Il-10 production in the spleen, but not the liver. This MZB cell-dependent increase in bacterial load was eliminated by anti–Il-10 mAb. In addition, Listeria infection of MZB cell-deficient Rbpj-cKO mice showed decreased bacterial load and increased survival. Whereas multiple cell types have been shown to be capable of Il-10 production, our results indicate that the MZB cell is the most dominant and relevant Il-10 source in the context of Listeria susceptibility. In marked contrast to the generally protective nature of MZB cells in defending against pathogenic infection, our results demonstrate that MZB cells play a detrimental role in Listeria infection and possibly other infections as well.

Keywords

Mice, Knockout, Cell Survival, B-Lymphocyte Subsets, Mice, Transgenic, Bacterial Load, Interleukin-10, Up-Regulation, Mice, Inbred C57BL, Mice, Animals, Listeriosis, Spleen

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%
bronze