Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Human Immunologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Human Immunology
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Human Immunology
Article . 2002 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Human Immunology
Article . 2003
versions View all 2 versions

The HLA class I A locus affects susceptibility to type 1 diabetes

Authors: Janelle A, Noble; Ana M, Valdes; Teodorica L, Bugawan; Raymond J, Apple; Glenys, Thomson; Henry A, Erlich;

The HLA class I A locus affects susceptibility to type 1 diabetes

Abstract

Human leukocyte antigen A (HLA-A) genotypes were determined for samples from 283 multiplex, Caucasian, type 1 diabetes families from the Human Biological Data Interchange (HBDI) using an immobilized probe assay. Distribution of HLA-A alleles transmitted to patients was significantly different from that in affected family-based controls (AFBAC) (p = 0.004). Transmission disequilibrium test (TDT) analysis revealed differential transmission of several HLA-A alleles from parents to affected offspring. HLA class II DRB1 and DQB1 loci were also typed, allowing assignment of HLA-A alleles to haplotypes and calculation of linkage disequilibrium values. Some of the apparent effects of HLA-A alleles on type 1 diabetes susceptibility were attributable to linkage disequilibrium with DR and DQ alleles, although others were not. The differences in frequencies between patients and controls of alleles A*0101, A*2402, and A*3002 could not be explained by linkage disequilibrium alone. Our results suggest an important role for class I antigens in modulating susceptibility to type 1 diabetes.

Keywords

Male, HLA-A Antigens, Genes, MHC Class II, Genes, MHC Class I, HLA-DR Antigens, Linkage Disequilibrium, Diabetes Mellitus, Type 1, Gene Frequency, HLA-DQ Antigens, HLA-DQ beta-Chains, Humans, Female, Alleles, HLA-DRB1 Chains

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    116
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
116
Top 10%
Top 10%
Top 10%
bronze