Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochemistryarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochemistry
Article
Data sources: UnpayWall
Biochemistry
Article . 2010 . Peer-reviewed
Data sources: Crossref
Biochemistry
Article . 2010
versions View all 2 versions

Endothelial Cell Prostaglandin I2 and Platelet-Activating Factor Production Are Markedly Attenuated in the Calcium-Independent Phospholipase A2β Knockout Mouse

Authors: Janhavi, Sharma; John, Turk; Jane, McHowat;

Endothelial Cell Prostaglandin I2 and Platelet-Activating Factor Production Are Markedly Attenuated in the Calcium-Independent Phospholipase A2β Knockout Mouse

Abstract

Damage and activation of lung endothelium can lead to interstitial edema, infiltration of inflammatory cells into the interstitium and airways, and production of inflammatory metabolites, all of which propagate airway inflammation in a variety of diseases. We have previously determined that stimulation of human microvascular endothelial cells from lung (HMVEC-L) results in activation of a calcium-independent phospholipase A(2) (iPLA(2)), and this leads to arachidonic acid release and production of prostaglandin I(2) (PGI(2)) and platelet-activating factor (PAF). We stimulated lung endothelial cells isolated from iPLA(2)beta-knockout (KO) and wild type (WT) mice with thrombin and tryptase to determine the role of iPLA(2)beta in endothelial cell membrane phospholipid hydrolysis. Thrombin or tryptase stimulation of WT lung endothelial cells resulted in increased arachidonic acid release and production of PGI(2) and PAF. Arachidonic acid release and PGI(2) production by stimulated iPLA(2)beta-KO endothelial cells were significantly reduced compared to WT. Measured PLA(2) activity and PGI(2) production by iPLA(2)beta-KO cells were suppressed by pretreatment with (R)-bromoenol lactone (R-BEL), which is a selective inhibitor of iPLA2gamma. In contrast to the increase in PAF production induced by stimulation of WT endothelial cells, none was observed for KO cells, and this suggests that endothelial PAF production is entirely dependent on iPLA(2)beta activity. Because inflammatory cell recruitment involves the interaction of endothelial cell PAF with PAF receptors on circulating cells, these data suggest that iPLA(2)beta may be a suitable therapeutic target for the treatment of inflammatory lung diseases.

Related Organizations
Keywords

Mice, Knockout, Arachidonic Acid, Hydrolysis, Thrombin, Endothelial Cells, Epoprostenol, Membrane Lipids, Mice, Phospholipases A2, Calcium-Independent, Animals, Tryptases, Platelet Activating Factor

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%
bronze