Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1994 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

A human ubiquitin-conjugating enzyme homologous to yeast UBC8.

Authors: P, Kaiser; W, Seufert; L, Höfferer; B, Kofler; C, Sachsenmaier; H, Herzog; S, Jentsch; +2 Authors

A human ubiquitin-conjugating enzyme homologous to yeast UBC8.

Abstract

Ubiquitin-conjugating enzymes catalyze the covalent attachment of ubiquitin to cellular substrates. Here we describe the isolation of a novel ubiquitin-conjugating enzyme from human placenta and the cloning of the corresponding cDNA. DNA sequencing revealed that this gene, UbcH2, encodes a protein with significant sequence similarity to yeast UBC8. In contrast to a previous report (Qin, S., Nakajima, B., Nomura, M., and Arfin, S. M. (1991) J. Biol. Chem. 266, 15549-15554), we discovered that UBC8 is interrupted by a single intron bearing an unusual branch point sequence. The revised amino acid sequence of yeast UBC8 exhibits 54% amino acid sequence identity to human UbcH2. Moreover, full-length UbcH2 and UBC8 enzymes expressed from their cDNAs show similar enzymatic activities in vitro by catalyzing the ubiquitination of histones, suggesting that the two enzymes may fulfill similar functions in vivo. Interestingly, comparison of the enzymatic activities of a truncated UBC8 (Qin, S., Nakajima, B., Nomura, M. and Arfin, S. M. (1991) J. Biol. Chem. 266, 15549-15554) and of the full-length enzyme (this report) suggests, that the first 12 amino-terminal residues of UBC8 are required for ubiquitination of histones in vitro but not for thiolester formation with ubiquitin. This suggests that the NH2 terminus of UBC8 may be necessary either for substrate recognition or for the transfer of ubiquitin onto substrates. The UbcH2 gene is located on chromosome 7 and shows a complex expression pattern with at least five different mRNAs.

Related Organizations
Keywords

DNA, Complementary, Base Sequence, Sequence Homology, Amino Acid, Molecular Sequence Data, Chromosome Mapping, Gene Expression, Introns, Substrate Specificity, Fungal Proteins, Histones, Ligases, Genes, Ubiquitin-Conjugating Enzymes, Humans, Amino Acid Sequence, RNA, Messenger, Cloning, Molecular, Sequence Alignment, Ubiquitins, DNA Primers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 10%
Top 10%
Top 10%
gold