Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1997 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Transcriptional Activity of TAL1 in T Cell Acute Lymphoblastic Leukemia (T-ALL) Requires RBTN1 or −2 and Induces TALLA1, a Highly Specific Tumor Marker of T-ALL

Authors: Y, Ono; N, Fukuhara; O, Yoshie;

Transcriptional Activity of TAL1 in T Cell Acute Lymphoblastic Leukemia (T-ALL) Requires RBTN1 or −2 and Induces TALLA1, a Highly Specific Tumor Marker of T-ALL

Abstract

TAL1, which is frequently activated in T cell acute lymphoblastic leukemia (T-ALL), encodes lineage-specific basic helix-loop-helix (bHLH) proteins that bind specifically to E-box DNA motif upon dimerization with ubiquitous basic helix-loop-helix proteins E47 or E12. RBTN1 and RBTN2, also frequently activated in T-ALL, encode proteins only with tandem cysteine-rich LIM domains. We found that aberrant expression of TAL1 detected in 11 out of 14 T-ALL cell lines was invariably accompanied by that of either RBTN1 or RBTN2. Forced expression of TAL1 together with RBTN1 or RBTN2, but not TAL1 alone, strongly induced artificial reporter genes in a TAL1/RBTN-negative T-ALL cell line, HPB-ALL. Such collaborative transcriptional activity of TAL1 and RBTN was not, however, observed in non-T cell lines, suggesting further involvement of some T cell-specific cofactors. In this context, we carried out preliminary evaluation of a potential role of the T cell-specific GATA-binding protein, GATA3, in the transcriptional activity of TAL1 and RBTN. We also showed that coexpression of TAL1 and RBTN1 in HPB-ALL strongly induced TALLA1, a highly specific T-ALL marker whose positivity correlated 100% with ectopic expression of TAL1 among various T-ALL cell lines. Collectively, ectopic TAL1 and RBTN1 or -2, together with some endogenous T cell-specific cofactors like GATA3, constitute a highly collaborative set of transcription factors whose aberrant activity in T cells may lead to leukemogenesis by modulating expression of downstream genes such as TALLA1.

Related Organizations
Keywords

Oncogene Proteins, Transcription, Genetic, GATA3 Transcription Factor, LIM Domain Proteins, Cell Line, DNA-Binding Proteins, Cell Transformation, Neoplastic, Proto-Oncogene Proteins, Metalloproteins, Basic Helix-Loop-Helix Transcription Factors, Biomarkers, Tumor, Trans-Activators, Humans, Leukemia-Lymphoma, Adult T-Cell, T-Cell Acute Lymphocytic Leukemia Protein 1, Adaptor Proteins, Signal Transducing, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Average
Top 10%
Top 10%
gold
Related to Research communities
Cancer Research