Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DNA and Cell Biologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DNA and Cell Biology
Article . 1993 . Peer-reviewed
License: Mary Ann Liebert TDM
Data sources: Crossref
versions View all 2 versions

Identification of Genomic Sequences That Mediate the Induction of the Endoplasmic Reticulum Stress Protein, ERp72, by Protein Traffic

Authors: Mythili Srinivasan; Noel Lenny; Michael Green;

Identification of Genomic Sequences That Mediate the Induction of the Endoplasmic Reticulum Stress Protein, ERp72, by Protein Traffic

Abstract

ERp72, a resident protein of the endoplasmic reticulum (ER) is both a stress protein and a member of the protein disulfide isomerase family of proteins. Analysis of the murine ERp72 promoter region revealed the presence of potential transcriptional control elements characteristic of the promoters of mammalian ER proteins. These include multiple CCAAT elements and Sp1 and AP-2 consensus sequences. Functional analysis of mutations in the ERp72 promoter and 5'-flanking region revealed an 82-bp fragment that is sufficient to mediate the stimulation observed for ERp72 either by stress or by the expression of incompletely assembled immunoglobulin mu heavy chain in the ER. This 82-bp fragment contains two CCAAT elements but little additional homology to protein traffic-responsive sequences of other members of the ER stress family. This suggests that the ERp72 gene contains a novel element that is the target of an intracellular signaling pathway initiated by protein traffic in the ER.

Related Organizations
Keywords

Membrane Glycoproteins, Base Sequence, Molecular Sequence Data, Gene Expression, Biological Transport, 3T3 Cells, Intracellular Membranes, Regulatory Sequences, Nucleic Acid, Endoplasmic Reticulum, Mice, Genes, Mutagenesis, Site-Directed, Animals, RNA, Messenger, Cloning, Molecular, Promoter Regions, Genetic, Heat-Shock Proteins, DNA Primers, Sequence Deletion, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Average
Top 10%
Average