Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 1981 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Gene conversion at the var1 locus on yeast mitochondrial DNA.

Authors: R L, Strausberg; R A, Butow;

Gene conversion at the var1 locus on yeast mitochondrial DNA.

Abstract

Alleles of the var1 locus on yeast mtDNA determine the apparent size of the mitochondrial translation product, var1 polypeptide. We have analyzed most of the different var1 alleles in our collection, which number at least 15, and have developed procedures and a genetic rationale for determining their origin and predicting their behavior in crosses. The var1 alleles are characterized by two genetically defined segments, designated a and b, which can move from one var1 allele to another by asymmetric gene conversion. We show that the a segment behaves as an entity in recombination; it is either present in or absent from different var1 alleles. The b segment usually, but not always, recombines as an entity; in some cases, only portions of the b segment recombine by gene conversion. Thus, the total number of electrophoretically resolvable var1 species we observe is explained by the assortment of a, b, and partial b segments. Each segment recombines at a characteristic frequency; however, one example is presented which shows that the recipient can modulate the frequency of gene conversion. Finally, we show that, like the 21S rDNA region (omega), there is polarity of gene conversion within var1.

Keywords

Fungal Proteins, Molecular Weight, Genes, Protein Biosynthesis, Gene Conversion, Saccharomyces cerevisiae, DNA, Fungal, DNA, Mitochondrial, Alleles, Crosses, Genetic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Average
Top 10%
Top 10%
bronze