Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cell Biochemistry an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell Biochemistry and Biophysics
Article . 2014 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Adenovirus-Mediated NDRG2 Inhibits the Proliferation of Human Renal Cell Carcinoma Cell Line OS-RC-2 in Vitro

Authors: Zhou, Wu; Huihua, Liao; Jing, Su; Linying, Yang; Zhou, Chi; Xinjun, OuYang;

Adenovirus-Mediated NDRG2 Inhibits the Proliferation of Human Renal Cell Carcinoma Cell Line OS-RC-2 in Vitro

Abstract

The objective of the study is to investigate the inhibitory effects of adenovirus-mediated N-Myc downstream-regulated gene 2 (NDRG2) on the proliferation of human renal cell carcinoma cell line OS-RC-2 in vitro. NDRG2 was harvested by RT-PCR, confirmed by DNA sequencing, and then cloned into the eukaryotic expression vector pIRES2-EGFP, which encodes green fluorescent protein (GFP), to construct pIRES2-EGFP-NDRG2 plasmid. OS-RC-2 cells with NDRG2 negative expression were transfected with pIRES2-EGFP-NDRG2 plasmid. The growth of transfected OS-RC-2 cells was observed under the light and fluorescence microscopes. After colony-forming cell assays, cell proliferation detection, and MTT assays, the growth curves of cells in each group were plotted to investigate the inhibitory effects of adenovirus-mediated NDRG2 on the proliferation of OS-RC-2 cells. Cell cycle was determined by flow cytometry. Confocal laser scanning microscopy was applied to determine the specific location of NDRG2 protein in subcellular level. A eukaryotic expression vector pIRES2-EGFP-NDRG2 was successfully constructed. After NDRG2 transfection, the growth of OS-RC-2 cells was inhibited. Flow cytometry showed that cells were arrested in S phase but the peak of cell apoptosis was not present, and confocal laser scanning microscopy showed that NDRG2 protein was located in mitochondrion. In conclusion, NDRG2 can significantly inhibit the proliferation of OS-RC-2 cells in vitro and its protein is specifically expressed in the mitochondrion.

Related Organizations
Keywords

Tumor Suppressor Proteins, Cell Cycle, Transfection, Kidney Neoplasms, Adenoviridae, Mitochondria, Gene Expression Regulation, Neoplastic, Cell Line, Tumor, Humans, Carcinoma, Renal Cell, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average