Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Endocrine Related Ca...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Endocrine Related Cancer
Article . 2010 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions

Association of testicular germ cell tumor with polymorphisms in estrogen receptor and steroid metabolism genes

Authors: FERLIN, ALBERTO; GANZ F; PENGO M; SELICE R; FRIGO, ANNA CHIARA; FORESTA, CARLO;

Association of testicular germ cell tumor with polymorphisms in estrogen receptor and steroid metabolism genes

Abstract

It is generally assumed that the development of testicular germ cell tumor (TGCT) is under endocrine control. In particular, unbalanced androgen/estrogen levels and/or activity are believed to represent the key events for TGCT development and progression. Furthermore, recent evidence has suggested a strong genetic component for TGCT. In this study, we analyzed whether a genetic variation in estrogen receptor (ESR) genes and steroid hormone metabolism genes is associated with TGCT. We genotyped for 17 polymorphic markers in 11 genes in 234 TGCT cases and 218 controls: ESR (ESR1 and ESR2); CYP19A1 (aromatase); 17β-hydroxysteroid dehydrogenase types 1 and 4 (HSD17B1 and HSD17B4) dehydrogenases that convert potent androgens and estrogens to weak hormones; cytochrome P450 hydroxylating enzymes CYP1A1, CYP1A2, and CYP1B1; and the metabolic enzymes COMT, SULT1A1, and SULT1E1. We observed a significant association of rs11205 in HSD17B4 with TGCT. TGCT risk was increased twofold per copy of the minor A allele at this locus (odds ratios (OR)=2.273, 95% confidence interval (CI)=1.737–2.973). Homozygous carriage of the minor A allele was associated with an over fourfold increased risk of TGCT (OR=4.561, 95% CI=2.615–7.955) compared with homozygous carriage of the major G allele. The risk was increased both for seminoma (OR=5.327, 95% CI=2.857–9.931) and for nonseminoma (OR=3.222, 95% CI=1.471–7.059). We found for the first time an association of polymorphisms in HSD17B4 gene with TGCT. Our findings expand the current knowledge on the role of genetic contribution in testicular cancer susceptibility, and support the hypothesis that variations in hormone metabolism genes might change the hormonal environment implicated in testicular carcinogenesis.

Related Organizations
Keywords

Adult, 17-Hydroxysteroid Dehydrogenases, Genotype, Estrogen Receptor alpha, Estrogens, Catechol O-Methyltransferase, Arylsulfotransferase, Estradiol Dehydrogenases, Aromatase, Cytochrome P-450 Enzyme System, Cytochrome P-450 CYP1A2, Cryptorchidism, Cytochrome P-450 CYP1B1, Cytochrome P-450 CYP1A1, Estrogen Receptor beta, Humans, Genetic Predisposition to Disease, Aryl Hydrocarbon Hydroxylases, Genetic Association Studies, Hydro-Lyases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 10%
Top 10%
Top 10%
bronze