Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2015 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Drosophila Low Temperature Viability Protein 1 (LTV1) Is Required for Ribosome Biogenesis and Cell Growth Downstream of Drosophila Myc (dMyc)

Authors: Wonho, Kim; Hag Dong, Kim; Youjin, Jung; Joon, Kim; Jongkyeong, Chung;

Drosophila Low Temperature Viability Protein 1 (LTV1) Is Required for Ribosome Biogenesis and Cell Growth Downstream of Drosophila Myc (dMyc)

Abstract

During animal development, various signaling pathways converge to regulate cell growth. In this study, we identified LTV1 as a novel cell growth regulator in Drosophila. LTV1 mutant larvae exhibited developmental delays and lethality at the second larval stage. Using biochemical studies, we discovered that LTV1 interacted with ribosomal protein S3 and co-purified with free 40S ribosome subunits. We further demonstrated that LTV1 is crucial for ribosome biogenesis through 40S ribosome subunit synthesis and preribosomal RNA processing, suggesting that LTV1 is required for cell growth by regulating protein synthesis. We also demonstrated that Drosophila Myc (dMyc) directly regulates LTV1 transcription and requires LTV1 to stimulate ribosome biogenesis. Importantly, the loss of LTV1 blocked the cell growth and endoreplication induced by dMyc. Combined, these results suggest that LTV1 is a key downstream factor of dMyc-induced cell growth by properly maintaining ribosome biogenesis.

Keywords

Chromatin Immunoprecipitation, Reverse Transcriptase Polymerase Chain Reaction, Temperature, Blotting, Northern, Real-Time Polymerase Chain Reaction, Animals, Genetically Modified, Immunoenzyme Techniques, Proto-Oncogene Proteins c-myc, Microscopy, Electron, Drosophila melanogaster, Protein Biosynthesis, Animals, Drosophila Proteins, RNA, Messenger, Ribosomes, Cells, Cultured, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Top 10%
gold