Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PROTOPLASMAarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
PROTOPLASMA
Article . 2015 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
PROTOPLASMA
Article . 2016
versions View all 2 versions

Isolation of a WRKY30 gene from Muscadinia rotundifolia (Michx) and validation of its function under biotic and abiotic stresses

Authors: Wenming, Jiang; Jiao, Wu; Yali, Zhang; Ling, Yin; Jiang, Lu;

Isolation of a WRKY30 gene from Muscadinia rotundifolia (Michx) and validation of its function under biotic and abiotic stresses

Abstract

WRKY transcription factors (TFs) play important roles in many plant processes, including responses to biotic and abiotic stresses. In the present study, Muscadinia rotundifolia MrWRKY30 dramatically accumulated in grapevine leaves in response to inoculation of Plasmopara viticola, a pathogen causing grapevine downy mildew disease. Similar responses were also found on grapevines treated with exogenous SA/JA/ET. Ectopic expression of MrWRKY30 in Arabidopsis thaliana "COL0" enhanced its resistance to downy mildew pathogen Peronospora parasitica. Pathogenesis-related (PR) genes, including AtPR1, AtPR4, AtPR5, and AtPDF1.2, were significantly upregulated in transgenic A. thaliana after P. parasitica inoculation. In the mean time, two critical genes in SA and JA signaling pathways, AtEDS5 and AtJAR1, were abundantly expressed as well, indicating that MrWRKY30 may enhance disease resistance of A. thaliana through SA and JA defense system. The transgenic A. thaliana plants also enhanced tolerance to cold stress accompanied with upregulation of AtCBF1, AtCBF3, AtICE1, and AtCOR47. MrWRKY30 might protect A. thaliana from cold damage by activating the AtCBF-mediated signaling pathway to induce the downstream AtCOR47 gene. Interestingly, the transgenic seedlings had a negative effect on salt tolerance. Reverse transcription PCR (RT-PCR) analysis revealed that antioxidant enzyme genes AtAPX (ascorbate peroxidase), AtCAT (catalase), and AtGST (glutathione-S-transferase) were suppressed in transgenic plants, which may lead to reactive oxygen species (ROS)-mediated sensitivity to salt stress.

Related Organizations
Keywords

Peronospora, Arabidopsis Proteins, Cold-Shock Response, Molecular Sequence Data, Arabidopsis, Gene Expression, Salt Tolerance, Genes, Plant, Plants, Genetically Modified, Plant Growth Regulators, Gene Expression Regulation, Plant, Seedlings, Vitis, Amino Acid Sequence, Disease Resistance, Plant Diseases, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%