Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://www.biorxiv....arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions

Ebselen as a highly active inhibitor of PLProCoV2

Authors: Ewelina Węglarz-Tomczak; Jakub M. Tomczak; Michał Talma; Stanley Brul;
Abstract

AbstractSince December 2019 a novel a coronavirus identified as SARS-CoV-2 or COV2 has been spreading around the world. On the 16th of May around 4.5 million people got infected and over 300,000 died due to the infection of COV2. The effective treatment remains a challenge. Targeted therapeutics are still under investigation. The papain-like protease (PLPro) from the human SARS-CoV-2 coronavirus is a cysteine protease that plays a critical role in virus replication. Its activity is required to process the viral polyprotein into functional, mature subunits. Moreover, COV2 uses this enzyme to modulate the host’s immune system to its own benefit. Therefore, it represents a highly promising target for the development of antiviral drugs.In this work, we discovered that ebselen, a synthetic organoselenium drug molecule with anti-inflammatory, anti-oxidant and cytoprotective activity in mammalian cells and cytotoxicity in lower organisms, is a highly active inhibitor of PLProCoV2. We proved that ebselen is a covalent, fast-binding inhibitor of PLProCoV2 exhibiting a low micromolar potency. Furthermore, we identified a difference between PLProfrom SARS-CoV-1 (the corona virus which caused the 2002–2004 outbreak, SARS) and SARS-CoV-2 that allows to explain the difference in dynamics of the replication, and, thus, the disease progression. Namely, we present that they show differences in the binding affinity of substrates that we observed through kinetics and molecular docking studies. Using a novel Approximate Bayesian Computation method we were able to find kinetic constants for both enzymes. Molecular modeling study on the structure of the active site and binding mode of the ebselen with SARS and COV2 showed also significant differences that could explain our observation that ebselen is less active and slower bounding with SARS than COV2.In conclusion, we show that ebselen inhibits the activity of the essential viral enzyme papain-like protease (PLpro) from SARS-COV-2 in low micromolar range.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Average
Top 10%