Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 2011 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 2011
versions View all 2 versions

Reduction of disulphide bonds unmasks potent antimicrobial activity of human β-defensin 1

Authors: Bjoern O, Schroeder; Zhihong, Wu; Sabine, Nuding; Sandra, Groscurth; Moritz, Marcinowski; Julia, Beisner; Johannes, Buchner; +3 Authors

Reduction of disulphide bonds unmasks potent antimicrobial activity of human β-defensin 1

Abstract

Human epithelia are permanently challenged by bacteria and fungi, including commensal and pathogenic microbiota. In the gut, the fraction of strict anaerobes increases from proximal to distal, reaching 99% of bacterial species in the colon. At colonic mucosa, oxygen partial pressure is below 25% of airborne oxygen content, moreover microbial metabolism causes reduction to a low redox potential of -200 mV to -300 mV in the colon. Defensins, characterized by three intramolecular disulphide-bridges, are key effector molecules of innate immunity that protect the host from infectious microbes and shape the composition of microbiota at mucosal surfaces. Human β-defensin 1 (hBD-1) is one of the most prominent peptides of its class but despite ubiquitous expression by all human epithelia, comparison with other defensins suggested only minor antibiotic killing activity. Whereas much is known about the activity of antimicrobial peptides in aerobic environments, data about reducing environments are limited. Herein we show that after reduction of disulphide-bridges hBD-1 becomes a potent antimicrobial peptide against the opportunistic pathogenic fungus Candida albicans and against anaerobic, Gram-positive commensals of Bifidobacterium and Lactobacillus species. Reduced hBD-1 differs structurally from oxidized hBD-1 and free cysteines in the carboxy terminus seem important for the bactericidal effect. In vitro, the thioredoxin (TRX) system is able to reduce hBD-1 and TRX co-localizes with reduced hBD-1 in human epithelia. Hence our study indicates that reduced hBD-1 shields the healthy epithelium against colonisation by commensal bacteria and opportunistic fungi. Accordingly, an intimate interplay between redox-regulation and innate immune defence seems crucial for an effective barrier protecting human epithelia.

Keywords

beta-Defensins, Colon, Protein Conformation, Partial Pressure, Molecular Sequence Data, Immunity, Innate, Oxygen, Dithiothreitol, Lactobacillus, Thioredoxins, Anti-Infective Agents, Candida albicans, Biocatalysis, Humans, Amino Acid Sequence, Bifidobacterium, Disulfides, Intestinal Mucosa, Oxidation-Reduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    414
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
414
Top 1%
Top 1%
Top 0.1%