Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Developmentarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Development
Article . 1993 . Peer-reviewed
Data sources: Crossref
Development
Article . 1994
versions View all 2 versions

Ectopic expression of seven-up causes cell fate changes during ommatidial assembly

Authors: Y, Hiromi; M, Mlodzik; S R, West; G M, Rubin; C S, Goodman;

Ectopic expression of seven-up causes cell fate changes during ommatidial assembly

Abstract

ABSTRACT During Drosophila ommatidial development, a single cell is selected within the ommatidial cluster to become the R7 photoreceptor neuron. The seven-up gene has been shown to play a role in this process by preventing four other photoreceptor precursors, R3/R4/R1/R6, from adopting the R7 cell fate. The seven-up gene encodes a steroid receptor-like molecule that is expressed only in those four cells that require seven-up function in the developing Drosophila ommatidium. We have examined the functional significance of the spatially restricted expression of seven-up by misexpressing seven-up isoforms. As expected from the function that seven-up performs in R3/R4/R1/R6, ubiquitous expression of seven-up causes transformation of the R7 cell to an R1-R6 cell fate. In addition, depending on the timing and spatial pattern of expression, various other phenotypes are produced including the loss of the R7 cell and the formation of extra R7 cells. Ubiquitous expression of seven-up close to the morphogenetic furrow interferes with R8 differentiation resulting in failure to express the boss protein, the ligand for the sevenless receptor tyrosine kinase, and the R7 cell is lost consequently. Extra R7 cells are formed by recruiting non-neuronal cone cells as photoreceptor neurons in a sevenless and bride of sevenless independent way. Thus, the spatiotemporal pattern of seven-up expression plays an essential role in controlling the number and cellular origin of the R7 neuron in the ommatidium. Our results also suggest that seven-up controls decisions not only between photoreceptor subtypes, but also between neuronal and non-neuronal fates.

Keywords

Phenotype, Morphogenesis, Animals, Gene Expression, Cell Differentiation, Drosophila, Genes, Insect, Photoreceptor Cells, Invertebrate, Eye, Immunohistochemistry

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    86
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
86
Top 10%
Top 10%
Top 10%