Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecotoxicology and En...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Ecotoxicology and Environmental Safety
Article . 2022 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions

Diallyl trisulfide reduced the reproductive capacity of male Sitotroga cerealella via the regulation of juvenile and ecdysone hormones

Authors: Sakhawat Shah; Su-Su Zhang; Karam Khamis Elgizawy; Wen-Han Yan; Ning Tang; Gang Wu; Feng-Lian Yang;

Diallyl trisulfide reduced the reproductive capacity of male Sitotroga cerealella via the regulation of juvenile and ecdysone hormones

Abstract

Environmental pollution and resistance in animals are major concerns for the application of synthetic pesticides. Diallyl trisulfide (DAT), an active compound in garlic essential oil, is a novel tool for active and safe control of agricultural insect pests. In this study, we analysed the effects of DAT (0.01 μL/L) on the protein content in male reproductive tissues (accessory glands, ejaculatory ducts, and testis), and juvenile hormone (JH) and ecdysone titres in a highly detrimental pest of stored products, Sitotroga cerealella. Evaluation of the expression profile of JH and ecdysone pathway-related genes in various tissues indicated that the accessory gland protein and ecdysone titres were markedly decreased after DAT fumigation, whereas the testis protein content and JH titre were increased. However, the protein content of the ejaculatory ducts remained unchanged between the treated and control groups. Further investigation revealed that DAT disrupted the mRNA expression of key enzymes involved in JH and ecdysone pathways. While increased mRNA levels of juvenile hormone acid O-methyltransferase (JHMAT) and Kruppel homologue 1 (Kr-h1) were observed after 4 and 7 h of DAT fumigation, the levels of juvenile hormone epoxide hydrolase (JHEH) were substantially reduced 3 h post-fumigation. mRNA levels of the ecdysone-responsive gene, FTZF1, and cytochrome P450 enzyme, CYP315A1, were notably decreased at 7 h and 4 h, respectively, post-fumigation, whereas CYP314A1 and CYP302A1 mRNA levels decreased after 3 h and 4 h, respectively. While DAT fumigation disrupted sperm number in the testis, ejaculatory ducts, and seminal vesicles, topical application of the 20-hydroxyecdysone (20E) analogue also lowered sperm number in the ejaculatory ducts. Topical application of methoprene, a JH analogue, increased the protein content in the testes, but not in the accessory glands or ejaculatory ducts. However, the survival rate was not affected by the topical application of methoprene or 20E. These data suggest that DAT regulates JH and ecdysone via its molecular pathway genes and modulates endocrine secretion during the male reproductive process.

Related Organizations
Keywords

Male, Ecdysone, Sperm number, Testis protein, Diallyl trisulfide, Methoprene, Environmental pollution, Environmental sciences, Juvenile Hormones, TD172-193.5, Male accessory gland protein, Juvenile and ecdysone hormones, Seeds, Animals, GE1-350, Sitotroga cerealella, Garlic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
gold