Structural basis of human ghrelin receptor signaling by ghrelin and the synthetic agonist ibutamoren
Structural basis of human ghrelin receptor signaling by ghrelin and the synthetic agonist ibutamoren
Abstract The 'hunger hormone' ghrelin activates the ghrelin receptor GHSR to stimulate food intake and growth hormone secretion and regulate reward signaling. Acylation of ghrelin at Ser3 is required for its agonistic action on GHSR. Synthetic agonists of GHSR are under clinical evaluation for disorders related to appetite and growth hormone dysregulation. Here, we report high-resolution cryo-EM structures of the GHSR-Gi signaling complex with ghrelin and the non-peptide agonist ibutamoren as an investigational new drug. Our structures together with mutagenesis data reveal the molecular basis for the binding of ghrelin and ibutamoren. The structural comparison suggests a salt bridge and an aromatic cluster near the agonist-binding pocket as important structural motifs in receptor activation. Notable variations of the Gi binding mode are observed in our cryo-EM analysis, indicating the highly dynamic nature of Gi-coupling to GHSR. Our results provide a framework for understanding GHSR signaling and developing new GHSR agonist drugs.
Science, Q, Humans, Receptors, Ghrelin, Article, Ghrelin, Signal Transduction
Science, Q, Humans, Receptors, Ghrelin, Article, Ghrelin, Signal Transduction
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).46 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
