Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Chemical ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Chemical Information and Modeling
Article . 2020 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 2 versions

AlphaSpace 2.0: Representing Concave Biomolecular Surfaces Using β-Clusters

Authors: David Rooklin; Joseph Katigbak; Yingkai Zhang; Yingkai Zhang; Haotian Li;

AlphaSpace 2.0: Representing Concave Biomolecular Surfaces Using β-Clusters

Abstract

Modern rational modulator design and structure-function characterization often concentrate on concave regions of biomolecular surfaces, ranging from well-defined small-molecule binding sites to large protein-protein interaction interfaces. Here, we introduce a β-cluster as a pseudomolecular representation of fragment-centric pockets detected by AlphaSpace [J. Chem. Inf. Model. 2015, 55, 1585], a recently developed computational analysis tool for topographical mapping of biomolecular concavities. By mimicking the shape as well as atomic details of potential molecular binders, this new β-cluster representation allows direct pocket-to-ligand shape comparison and can be used to guide ligand optimization. Furthermore, we defined the β-score, the optimal Vina score of the β-cluster, as an indicator of pocket ligandability and developed an ensemble β-cluster approach, which allows one-to-one pocket mapping and comparison among aligned protein structures. We demonstrated the utility of β-cluster representation by applying the approach to a wide variety of problems including binding site detection and comparison, characterization of protein-protein interactions, and fragment-based ligand optimization. These new β-cluster functionalities have been implemented in AlphaSpace 2.0, which is freely available on the web at http://www.nyu.edu/projects/yzhang/AlphaSpace2.

Related Organizations
Keywords

Models, Molecular, Binding Sites, Proteins, Ligands, Algorithms, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%
bronze