The Tumor Suppressor PML Specifically Accumulates at RPA/Rad51-Containing DNA Damage Repair Foci but Is Nonessential for DNA Damage-Induced Fibroblast Senescence
The Tumor Suppressor PML Specifically Accumulates at RPA/Rad51-Containing DNA Damage Repair Foci but Is Nonessential for DNA Damage-Induced Fibroblast Senescence
The PML tumor suppressor has been functionally implicated in DNA damage response and cellular senescence. Direct evidence for such a role based on PML knockdown or knockout approaches is still lacking. We have therefore analyzed the irradiation-induced DNA damage response and cellular senescence in human and mouse fibroblasts lacking PML. Our data show that PML nuclear bodies (NBs) nonrandomly associate with persistent DNA damage foci in unperturbed human skin and in high-dose-irradiated cell culture systems. PML bodies do not associate with transient γH2AX foci after low-dose gamma irradiation. Superresolution microscopy reveals that all PML bodies within a nucleus are engaged at Rad51- and RPA-containing repair foci during ongoing DNA repair. The lack of PML (i) does not majorly affect the DNA damage response, (ii) does not alter the efficiency of senescence induction after DNA damage, and (iii) does not affect the proliferative potential of primary mouse embryonic fibroblasts during serial passaging. Thus, while PML NBs specifically accumulate at Rad51/RPA-containing lesions and senescence-derived persistent DNA damage foci, they are not essential for DNA damage-induced and replicative senescence of human and murine fibroblasts.
- Harvard University United States
- Leibniz Association Germany
- University College London United Kingdom
- Beth Israel Deaconess Medical Center United States
- Carl Zeiss (Germany) Germany
Cell Nucleus, DNA Repair, Tumor Suppressor Proteins, Nuclear Proteins, Fibroblasts, Promyelocytic Leukemia Protein, Cell Line, Histones, Mice, Protein Transport, Replication Protein A, Animals, Humans, Rad51 Recombinase, Cellular Senescence, Cell Proliferation, DNA Damage, Transcription Factors
Cell Nucleus, DNA Repair, Tumor Suppressor Proteins, Nuclear Proteins, Fibroblasts, Promyelocytic Leukemia Protein, Cell Line, Histones, Mice, Protein Transport, Replication Protein A, Animals, Humans, Rad51 Recombinase, Cellular Senescence, Cell Proliferation, DNA Damage, Transcription Factors
20 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).25 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
