Powered by OpenAIRE graph

Effects of Human Erythrocyte Guanine Nucleotide-Binding Regulatory Protein on Parathyroid Hormone-Responsive Adenylate Cyclase from Canine Renal Cortex

Authors: M A, Levine; A, Greene; R T, Turner; N H, Bell;

Effects of Human Erythrocyte Guanine Nucleotide-Binding Regulatory Protein on Parathyroid Hormone-Responsive Adenylate Cyclase from Canine Renal Cortex

Abstract

We studied the effects of the guanine nucleotide-binding regulatory protein (Gs) from human erythrocytes on PTH-responsive adenylate cyclase from partially purified membranes of canine renal cortex (CRC). Extracts of erythrocyte membranes, containing soluble Gs, was obtained by treatment with a detergent (Lubrol PX). Gs did not stimulate adenylate cyclase activity by itself, but amplified the response of adenylate cyclase in CRC membranes to both synthetic bovine PTH-(1-34) [bPTH-(1-34)] and to the hydrolysis-resistant GTP analog 5'-guanylimido-diphosphate [Gpp(NH)p]. Gs increased PTH stimulation of adenylate cyclase activity in both the presence and absence of Gpp(NH)p. In the absence of Gpp(NH)p, the potentiating effect of Gs occurred only when the concentration of bPTH-(1-34) was greater than 10 ng/ml. bPTH-(1-34), Gpp(NH)p, and Gs each enhanced the catalytic activity of adenylate cyclase when added separately or in combination by increasing the apparent maximum velocity (Vmax) of the enzyme without altering the apparent Km for MgATP. The effect of Gs on CRC membrane adenylate cyclase activity in the presence of NaF (10 mM) and forskolin (100 microM) was also examined. NaF- and forskolin-stimulated enzyme activities were significantly increased by Gs in both the presence and absence of Gpp(NH)p (100 microM). Analysis of double reciprocal plots of substrate concentration and enzyme activity revealed that NaF and forskolin increased the Vmax of the catalytic activity and did not alter the apparent Km of the enzyme for MgATP. These data support the role of Gs as a regulator of the response of adenylate cyclase to hormones, guanyl nucleotides, NaF, and forskolin. Our studies address the relative functional stoichiometry between Gs and catalytic unit present in CRC membranes and suggest that the CRC adenylate cyclase system must contain insufficient Gs to couple with all available catalytic units. These results are consistent with the possibility that deficiency of Gs impairs hormonal stimulation by diminishing the apparent Vmax of the catalytic unit and does not alter the apparent affinity of the enzyme for MgATP.

Related Organizations
Keywords

Guanylyl Imidodiphosphate, Kidney Cortex, Colforsin, Erythrocyte Membrane, Peptide Fragments, Kinetics, GTP-Binding Proteins, Parathyroid Hormone, Animals, Humans, Sodium Fluoride, Cattle, Diterpenes, Adenylyl Cyclases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average