Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2006 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Regulation of Nuclear Translocation of HDAC3 by IκBα Is Required for Tumor Necrosis Factor Inhibition of Peroxisome Proliferator-activated Receptor γ Function

Authors: Zhanguo, Gao; Qing, He; Bailu, Peng; Paul J, Chiao; Jianping, Ye;

Regulation of Nuclear Translocation of HDAC3 by IκBα Is Required for Tumor Necrosis Factor Inhibition of Peroxisome Proliferator-activated Receptor γ Function

Abstract

Inhibition of peroxisome proliferator-activated receptor gamma (PPARgamma) function by TNF-alpha contributes to glucose and fatty acid metabolic disorders in inflammation and cancer, although the molecular mechanism is not fully understood. In this study, we demonstrate that nuclear translocation of HDAC3 is regulated by TNF-alpha, and this event is required for inhibition of transcriptional activity of PPARgamma by TNF-alpha. HDAC3 is associated with IkappaBalpha in the cytoplasm. After IkappaBalpha degradation in response to TNF-alpha, HDAC3 is subject to nuclear translocation, leading to an increase in HDAC3 activity in the nucleus. This event leads to subcellular redistribution of HDAC3. Knock-out of IkappaBalpha, but not p65 or p50, leads to disappearance of HDAC3 in the cytoplasm, which is associated with HDAC3 enrichment in the nucleus. These data suggest that inhibition of PPARgamma by TNF-alpha is not associated with a reduction in the DNA binding activity of PPARgamma. Rather, these results suggest that IkappaBalpha-dependent nuclear translocation of HDAC3 is responsible for PPARgamma inhibition by TNF-alpha.

Keywords

Cell Nucleus, Tumor Necrosis Factor-alpha, Active Transport, Cell Nucleus, Lipid Metabolism, Histone Deacetylases, PPAR gamma, Mice, Protein Transport, NF-KappaB Inhibitor alpha, 3T3-L1 Cells, Animals, Humans, I-kappa B Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    132
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
132
Top 10%
Top 10%
Top 10%
gold
Related to Research communities
Cancer Research