Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Cardiology
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Low extracellular K+ increases intracellular Ca2+ oscillation and injury by activating the reverse mode Na+–Ca2+ exchanger and inhibiting the Na+, K+ ATPase in rat cardiomyocytes

Authors: Feng, Wu; Geng-Ze, Wei; Wei-Jie, Li; Bing, Liu; Jing-Jun, Zhou; Hai-Chang, Wang; Feng, Gao;

Low extracellular K+ increases intracellular Ca2+ oscillation and injury by activating the reverse mode Na+–Ca2+ exchanger and inhibiting the Na+, K+ ATPase in rat cardiomyocytes

Abstract

The effects of low K(+) on post-ischemic reperfused heart cells are not clearly understood. Calcium overload is one of the major causes for myocardial reperfusion injury, the present study was to investigate the role of intracellular calcium oscillations in the effects of reperfusion with low K(+) on rat myocytes.Ischemic myocytes were reperfused with Tyrode solution containing K(+) at 5.4 (control) or 3.0 mM (low K(+)) for 10 min. the changes of intracellular calcium was recorded by spectrofluorometry. The exclusion of trypan blue by myocytes served as indices of viability. Measurements of cell length, reverse-mode Na(+)-Ca(2+) exchanger (NCX) and Na(+), K(+) ATPase activity were performed.Compared to control, myocytes reperfused with low K(+) had greater number of calcium oscillations and reverse-mode NCX activity, which were accompanied with decreased cell length recovery and cell viability. Reperfusion with KB-R7943, an inhibitor of reverse-mode NCX, attenuated the effects of low K(+) on all the parameters. Inhibition of Na(+), K(+) ATPase with Ouabain increased the susceptibility to calcium oscillations in myocytes reperfused with low K(+), which was accompanied with cell length shortening and decreased cell viability. Reperfusion with K(+) at 9.0 mM, which activated Na(+), K(+) ATPase, attenuated calcium oscillations, protected cell length recovery, and increased cell viability.These results suggest that increased calcium oscillations mediate the exacerbating reperfusion injury with low K(+) on myocytes, and inhibition of Na(+), K(+) ATPase activity and increase of reverse-mode NCX activity contribute to these effects.

Related Organizations
Keywords

Male, Cell Survival, Heart Ventricles, Myocardial Reperfusion Injury, Sodium-Calcium Exchanger, Potassium Chloride, Rats, Rats, Sprague-Dawley, Animals, Calcium, Myocytes, Cardiac, Calcium Signaling, Enzyme Inhibitors, Sodium-Potassium-Exchanging ATPase, Ouabain, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average