Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Szeged...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Circulation Research
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions

Unique Cardiac Purkinje Fiber Transient Outward Current β-Subunit Composition

A Potential Molecular Link to Idiopathic Ventricular Fibrillation
Authors: Xiao Ling; Koopmann Tamara T.; Ördög Balázs; Postema Pieter G.; Verkerk Arie O.; Iyer Vivek; Sampson Kevin J.; +9 Authors

Unique Cardiac Purkinje Fiber Transient Outward Current β-Subunit Composition

Abstract

Rationale: A chromosomal haplotype producing cardiac overexpression of dipeptidyl peptidase-like protein-6 (DPP6) causes familial idiopathic ventricular fibrillation. The molecular basis of transient outward current ( I to ) in Purkinje fibers (PFs) is poorly understood. We hypothesized that DPP6 contributes to PF I to and that its overexpression might specifically alter PF I to properties and repolarization. Objective: To assess the potential role of DPP6 in PF I to . Methods and Results: Clinical data in 5 idiopathic ventricular fibrillation patients suggested arrhythmia origin in the PF-conducting system. PF and ventricular muscle I to had similar density, but PF I to differed from ventricular muscle in having tetraethylammonium sensitivity and slower recovery. DPP6 overexpression significantly increased, whereas DPP6 knockdown reduced, I to density and tetraethylammonium sensitivity in canine PF but not in ventricular muscle cells. The K + -channel interacting β-subunit K + -channel interacting protein type-2, essential for normal expression of I to in ventricular muscle, was weakly expressed in human PFs, whereas DPP6 and frequenin (neuronal calcium sensor-1) were enriched. Heterologous expression of Kv4.3 in Chinese hamster ovary cells produced small I to ; I to amplitude was greatly enhanced by coexpression with K + -channel interacting protein type-2 or DPP6. Coexpression of DPP6 with Kv4.3 and K + -channel interacting protein type-2 failed to alter I to compared with Kv4.3/K + -channel interacting protein type-2 alone, but DPP6 expression with Kv4.3 and neuronal calcium sensor-1 (to mimic PF I to composition) greatly enhanced I to compared with Kv4.3/neuronal calcium sensor-1 and recapitulated characteristic PF kinetic/pharmacological properties. A mathematical model of cardiac PF action potentials showed that I to enhancement can greatly accelerate PF repolarization. Conclusions: These results point to a previously unknown central role of DPP6 in PF I to , with DPP6 gain of function selectively enhancing PF current, and suggest that a DPP6-mediated PF early-repolarization syndrome might be a novel molecular paradigm for some forms of idiopathic ventricular fibrillation.

Countries
Netherlands, Hungary, Hungary
Keywords

RM Therapeutics. Pharmacology / terápia, Adult, Male, Patch-Clamp Techniques, QH3015 Molecular biology / molekuláris biológia, Heart Ventricles, Nerve Tissue Proteins, CHO Cells, In Vitro Techniques, Cricetulus, Dogs, Cricetinae, Animals, Humans, Dipeptidyl-Peptidases and Tripeptidyl-Peptidases, Cells, Cultured, Kv Channel-Interacting Proteins, Middle Aged, Models, Theoretical, gyógyszertan, Disease Models, Animal, Gene Knockdown Techniques, Female, EMC COEUR-09

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    81
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
81
Top 10%
Top 10%
Top 10%
Green
bronze