Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2003 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Sarcoglycans of the zebrafish: orthology and localization to the sarcolemma and myosepta of muscle

Authors: Chambers SP; Anderson LVB; Maguire GM; Dodd A; Love DR;

Sarcoglycans of the zebrafish: orthology and localization to the sarcolemma and myosepta of muscle

Abstract

The zebrafish is an established model of vertebrate development and is also receiving increasing attention in terms of human disease modelling. In order to provide experimental support to realize this modelling potential, we report here the identification of apparent orthologues of many critical members of the dystrophin-associated glycoprotein complex (DGC) that have been implicated in a diverse range of neuromuscular disorders. In addition, immunohistochemical studies show the localization of the DGC to the sarcolemma of adult zebrafish muscle and in particular the myosepta. Together, these data suggest that the DGC in adult zebrafish may play a highly conserved functional role in muscle architecture that, when disrupted, could offer insight into human neuromuscular disease processes.

Related Organizations
Keywords

Membrane Glycoproteins, Sequence Homology, Amino Acid, Molecular Sequence Data, Muscle Proteins, Immunohistochemistry, Cytoskeletal Proteins, Sarcolemma, Animals, Humans, Amino Acid Sequence, Dystroglycans, Muscle, Skeletal, Sequence Alignment, Phylogeny, Zebrafish

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Average
Top 10%
Top 10%