Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FEBS Lettersarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
FEBS Letters
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
FEBS Letters
Article . 2002 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
FEBS Letters
Article . 2004
versions View all 3 versions

Differential phosphorylation activities of CDK‐activating kinases in Arabidopsis thaliana

Authors: Shimotohno, Akie; Matsubayashi, Satoko; Yamaguchi, Masatoshi; Uchimiya, Hirofumi; Umeda, Masaaki;

Differential phosphorylation activities of CDK‐activating kinases in Arabidopsis thaliana

Abstract

Activation of cyclin‐dependent kinases (CDKs) requires phosphorylation of a threonine residue within the T‐loop by a CDK‐activating kinase (CAK). Here we isolated an Arabidopsis cDNA (CAK4At) whose predicted product shows a high similarity to vertebrate CDK7/p40MO15. Northern blot analysis showed that expressions of the four Arabidopsis CAKs (CAK1At–CAK4At) were not dependent on cell division. CAK2At‐ and CAK4At‐immunoprecipitates of Arabidopsis crude extract phosphorylated CDK and the carboxy‐terminal domain (CTD) of the largest subunit of RNA polymerase II with different preferences. These results suggest the existence of differential mechanisms in Arabidopsis that control CDK and CTD phosphorylation by multiple CAKs.

Related Organizations
Keywords

Arabidopsis thaliana, Arabidopsis Proteins, Genetic Complementation Test, Molecular Sequence Data, Cyclin-dependent kinase, Arabidopsis, Cell cycle, Cyclin-Dependent Kinases, CDK-activating kinase, Yeasts, Amino Acid Sequence, RNA Polymerase II, Phosphorylation, Transcription, Protein Kinases, Cells, Cultured, Cyclin-Dependent Kinase-Activating Kinase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 10%
bronze