Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Pharmacol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Pharmacology and Experimental Therapeutics
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Cocaine Alters Vesicular Dopamine Sequestration and Potassium-Stimulated Dopamine Release: The Role of D2 Receptor Activation

Authors: Annette E. Fleckenstein; Sarah J. Farnsworth; Trent J. Volz; Glen R. Hanson;

Cocaine Alters Vesicular Dopamine Sequestration and Potassium-Stimulated Dopamine Release: The Role of D2 Receptor Activation

Abstract

Cocaine is a psychostimulant that inhibits the inward transport of dopamine (DA) via the neuronal DA transporter, thereby increasing DA concentrations in the synaptic cleft. Cocaine administration also causes a redistribution of striatal vesicular monoamine transporter (VMAT)-2-containing vesicles that co-fractionate with synaptosomal membranes after osmotic lysis (referred to herein as membrane-associated vesicles) to a nonmembrane-associated, cytoplasmic subcellular fraction. Although previous studies from our laboratory have focused on the impact of cocaine on cytoplasmic vesicles, the present report describes the pharmacological effects of cocaine on the membrane-associated vesicle population. Results revealed that the redistribution of VMAT-2 and associated vesicles away from synaptosomal membranes is associated with a decrease in total DA transport and DA content in the membrane-associated VMAT-2-containing subcellular fraction. Cocaine also decreases the velocity and magnitude of K+-stimulated exocytotic DA release from whole striatal suspensions. The cocaine-induced VMAT-2 redistribution, decrease in DA release, and decrease in total DA transport are mediated by D2 receptors as these events were prevented by pretreatment with the D2 receptor antagonist, eticlopride [S-(-)-3-chloro-5-ethyl-N-[(1-ethyl-2-pyrrolidinyl)methyl]-6-hydroxy-2-methoxybenzamide hydrochloride]. These data suggest that after cocaine administration, D2 receptors are activated because of increased synaptic DA, resulting in a redistribution of DA-containing vesicles away from synaptosomal membranes, thus leading to less DA released after a depolarizing stimulus. These findings provide insight into not only the mechanism of action of cocaine but also mechanisms underlying the regulation of dopaminergic neurons.

Related Organizations
Keywords

Male, Receptors, Dopamine D2, Dopamine, Cell Membrane, Corpus Striatum, Electric Stimulation, Rats, Rats, Sprague-Dawley, Cocaine, Vesicular Monoamine Transport Proteins, Potassium, Animals, Synaptic Vesicles

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Top 10%
bronze