Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cytoskeletonarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cytoskeleton
Article . 2010 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Cytoskeleton
Article . 2010
versions View all 2 versions

Tumoral and tissue‐specific expression of the major human β‐tubulin isotypes

Authors: Luis J, Leandro-García; Susanna, Leskelä; Iñigo, Landa; Cristina, Montero-Conde; Elena, López-Jiménez; Rocío, Letón; Alberto, Cascón; +2 Authors

Tumoral and tissue‐specific expression of the major human β‐tubulin isotypes

Abstract

AbstractThe β‐tubulins are microtubule components encoded by a multigene family, which produces slightly different proteins with complex expression patterns. Several widely used anticancer drugs base their activity on β‐tubulin binding, microtubule dynamics alteration, and cell division blockage. The expression of these drug targets in tumoral and normal cells could be of crucial importance for therapy outcome, unfortunately, the complex β‐tubulin expression patterns have been poorly characterized in human. In this study, we developed a quantitative RT‐PCR technique that accurately determines the mRNA expression of the eight human β‐tubulin isotypes, encoding class I, IIa, IIb, III, IVa, IVb, V, and VI and applied it to 21 nontumoral tissues and 79 tumor samples belonging to seven cancer types. In the nontumoral tissues, we found that, overall, TUBB (I), TUBB2C (IVb), and TUBB6 (V) were ubiquitous, TUBB1(VI) was hematopoietic cell‐specific, and TUBB2A (IIa), TUBB2B (IIb), TUBB3 (III), and TUBB4 (IVa) had high expression in brain; however, the contribution of the different isotypes to the total β‐tubulin content varied for each tissue and had a complex pattern. In tumoral tissues, most isotypes exhibited an altered expression in specific tumor types or related to tumoral characteristics. In general, TUBB3 showed a great increase in expression while TUBB6 expression was largely decreased in most tumors. Thus, normal tissues showed a complex β‐tubulin isotype distribution, which could contribute to the toxicity profile of the microtubule‐binding drugs. In addition, the specific isotypes significantly altered in tumors might represent markers for drug response. © 2010 Wiley‐Liss, Inc.

Keywords

Gene Expression Regulation, Neoplastic, Organ Specificity, Reverse Transcriptase Polymerase Chain Reaction, Tubulin, Neoplasms, Humans, Protein Isoforms, RNA, Messenger

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    231
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
231
Top 1%
Top 1%
Top 1%