Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Peptidesarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Peptides
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Peptides
Article . 2005
versions View all 2 versions

The influence of the peptide NAP on Mac-1-deficient mice following closed head injury

Authors: Roy, Zaltzman; Alexander, Alexandrovich; Victoria, Trembovler; Esther, Shohami; Illana, Gozes;

The influence of the peptide NAP on Mac-1-deficient mice following closed head injury

Abstract

A single administration of the neuroprotective peptide NAP was previously shown to protect against death associated with closed head injury (CHI) and enhance recovery of the surviving mice. The protective effect was accompanied by down-regulation of the relative mRNA content of the complement receptor 3 (Mac-1, a marker for inflammation) as measured about a month after the injury. In contrast, the mRNA transcripts for activity-dependent neuroprotective protein (ADNP, the NAP containing protein) were shown to increase 29 days post CHI in the injured hemisphere of Mac-1 expressing mice. The present study was set out to investigate: (1) are Mac-1-deficient mice less susceptible to the adverse outcome of traumatic head injury; (2) does NAP treatment affect Mac-1-deficient mice subjected to head injury; and (3) is Mac-1 expression associated with ADNP expression. Results showed that (1) Mac-1-deficient mice were partially protected against death associated with severe head injury as compared to Mac-1 expressing mice. (2) Significant protection against death was observed in NAP-treated mice and an increase in recovery was observed in the NAP-treated Mac-1 mice 4 weeks after injury. (3) ADNP expression did not change in the Mac-1-deficient mice following head injury. Our working hypothesis is that a month following injury, gene expression in the injured brain is altered and competing proteins are expressed such as Mac-1 that is associated with inflammation and ADNP that is associated with neuroprotection. Obviously, this plasticity in gene expression is intimately interwoven with the genetic background of the animal. NAP treatment tilts the balance toward neuroprotection.

Keywords

Homeodomain Proteins, Mice, Knockout, Neurologic Examination, Time Factors, Macrophage-1 Antigen, Nerve Tissue Proteins, Neuropsychological Tests, Survival Analysis, Disease Models, Animal, Mice, Neuroprotective Agents, Head Injuries, Closed, Animals, RNA, Messenger, Oligopeptides

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Average
Top 10%