Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2009 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Control of TANK-binding Kinase 1-mediated Signaling by the γ134.5 Protein of Herpes Simplex Virus 1

Authors: Dustin, Verpooten; Yijie, Ma; Songwang, Hou; Zhipeng, Yan; Bin, He;

Control of TANK-binding Kinase 1-mediated Signaling by the γ134.5 Protein of Herpes Simplex Virus 1

Abstract

TANK-binding kinase 1 (TBK1) is a key component of Toll-like receptor-dependent and -independent signaling pathways. In response to microbial components, TBK1 activates interferon regulatory factor 3 (IRF3) and cytokine expression. Here we show that TBK1 is a novel target of the gamma(1)34.5 protein, a virulence factor whose expression is regulated in a temporal fashion. Remarkably, the gamma(1)34.5 protein is required to inhibit IRF3 phosphorylation, nuclear translocation, and the induction of antiviral genes in infected cells. When expressed in mammalian cells, the gamma(1)34.5 protein forms complexes with TBK1 and disrupts the interaction of TBK1 and IRF3, which prevents the induction of interferon and interferon-stimulated gene promoters. Down-regulation of TBK1 requires the amino-terminal domain. In addition, unlike wild type virus, a herpes simplex virus mutant lacking gamma(1)34.5 replicates efficiently in TBK1(-/-) cells but not in TBK1(+/+) cells. Addition of exogenous interferon restores the antiviral activity in both TBK1(-/-) and TBK(+/+) cells. Hence, control of TBK1-mediated cell signaling by the gamma(1)34.5 protein contributes to herpes simplex virus infection. These results reveal that TBK1 plays a pivotal role in limiting replication of a DNA virus.

Keywords

Mice, Knockout, Active Transport, Cell Nucleus, RNA-Binding Proteins, Herpesvirus 1, Human, Interferon-beta, Protein Serine-Threonine Kinases, Cell Line, Mice, Viral Proteins, Chlorocebus aethiops, Mutation, Animals, Humans, Interferon Regulatory Factor-3, Phosphorylation, Promoter Regions, Genetic, Adaptor Proteins, Signal Transducing, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    166
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
166
Top 10%
Top 10%
Top 1%
gold