Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Endocrinologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Endocrinology
Article
Data sources: UnpayWall
Endocrinology
Article . 2006 . Peer-reviewed
Data sources: Crossref
Endocrinology
Article . 2006
versions View all 2 versions

Role of Phosphatidylinositol 3-Kinaseγ in the β-Cell: Interactions with Glucagon-Like Peptide-1

Authors: Li-Xin, Li; Patrick E, MacDonald; Diane S, Ahn; Gavin Y, Oudit; Peter H, Backx; Patricia L, Brubaker;

Role of Phosphatidylinositol 3-Kinaseγ in the β-Cell: Interactions with Glucagon-Like Peptide-1

Abstract

Glucagon-like peptide-1 (GLP-1) increases β-cell function and growth through protein kinase A- and phosphatidylinositol-3-kinase (PI3-K)/protein kinase B, respectively. GLP-1 acts via a G protein-coupled receptor, and PI3-Kγ is known to be activated by Gβγ. Therefore, the role of PI3-Kγ in the chronic effects of GLP-1 on the β-cell was investigated using PI3-Kγ knockout (KO) mice treated with the GLP-1 receptor agonist, exendin-4 (Ex4; 1 nmol/kg sc every 24 h for 14 d). In vivo, glucose and insulin responses were similar in PBS- and Ex4-treated KO and wild-type (WT) mice. However, glucose-stimulated insulin secretion was markedly impaired in islets from PBS-KO mice (P < 0.05), and this was partially normalized by chronic Ex4 treatment (P < 0.05). In contrast, insulin content was increased in PBS-KO islets, and this was paradoxically decreased by Ex4 treatment, compared with the stimulatory effect of Ex4 on WT islets (P < 0.05–0.01). Transfection of INS-1E β-cells with small interfering RNA for PI3-Kγ similarly decreased glucose-stimulated insulin secretion (P < 0.01) and increased insulin content. Basal values for β-cell mass, islet number and proliferation, glucose transporter 2, glucokinase, and insulin receptor substrate-2 were increased in PBS-KO mice (P < 0.05–0.001) and, although they were increased by Ex4 treatment of WT animals (P < 0.05), they were decreased in Ex4-KO mice (P < 0.05–0.01). These findings indicate that PI3-Kγ deficiency impairs insulin secretion, resulting in compensatory islet growth to maintain normoglycemia. Chronic Ex4 treatment normalizes the secretory defect, thereby relieving the pressure for expansion of β-cell mass. These studies reveal a new role for PI3-Kγ as a positive regulator of insulin secretion, and reinforce the importance of GLP-1 for the maintenance of normal β-cell function.

Related Organizations
Keywords

Mice, Knockout, GTP-Binding Protein beta Subunits, Isoenzymes, Mice, Inbred C57BL, Mice, Phosphatidylinositol 3-Kinases, Glucose, Glucagon-Like Peptide 1, GTP-Binding Protein gamma Subunits, Insulin-Secreting Cells, Animals, Class Ib Phosphatidylinositol 3-Kinase, Insulin, RNA Interference, Pancreas, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Average
Top 10%
Top 10%
bronze