Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The EMBO Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The EMBO Journal
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The EMBO Journal
Article . 1995 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
The EMBO Journal
Article . 1995
versions View all 2 versions

AFT1: a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae.

Authors: Richard D. Klausner; Andrew Dancis; Yuko Yamaguchi-Iwai;

AFT1: a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae.

Abstract

Using a scheme for selecting mutants of Saccharomyces cerevisiae with abnormalities of iron metabolism, we have identified a gene, AFT1, that mediates the control of iron uptake. AFT1 encodes a 78 kDa protein with a highly basic amino terminal domain and a glutamine-rich C-terminal domain, reminiscent of transcriptional activators. The protein also contains an amino terminal and a C-terminal region with 10% His residues. A dominant mutant allele of this gene, termed AFT1-1up, results in high levels of ferric reductase and ferrous iron uptake that are not repressed by exogenous iron. The increased iron uptake is associated with enhanced susceptibility to iron toxicity. These effects may be explained by the failure of iron to repress transcription of FRE1, FRE2 and FET3. FRE1 and FRE2 encode plasma membrane ferric reductases, obligatory for ferric iron assimilation, and FET3 encodes a copper-dependent membrane-associated oxidase required for ferrous iron uptake. Conversely, a strain with interruption of the AFT1 gene manifests low ferric reductase and ferrous iron uptake and is susceptible to iron deprivation, because of deficient expression of FRE1 and negligible expression of FRE2 and FET3. Thus, AFT1 functions to activate transcription of target genes in response to iron deprivation and thereby plays a central role in iron homeostasis.

Related Organizations
Keywords

Saccharomyces cerevisiae Proteins, Base Sequence, FMN Reductase, Genes, Fungal, Molecular Sequence Data, Restriction Mapping, Ceruloplasmin, Biological Transport, RNA, Fungal, Saccharomyces cerevisiae, Fungal Proteins, Gene Expression Regulation, Fungal, Mutation, Homeostasis, NADH, NADPH Oxidoreductases, Amino Acid Sequence, Ferrous Compounds, RNA, Messenger, Cloning, Molecular, Oxidoreductases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    345
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
345
Top 1%
Top 1%
Top 1%
bronze