Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Leukemiaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Leukemia
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Leukemia
Article . 2011 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Leukemia
Article . 2011
versions View all 3 versions

The heterodimerization domains of MLL—FYRN and FYRC—are potential target structures in t(4;11) leukemia

Authors: Pless, Birgit; Oehm, Clarissa; Knauer, Shirley; Stauber, Roland; Dingermann, Theo; Marschalek, Rolf;

The heterodimerization domains of MLL—FYRN and FYRC—are potential target structures in t(4;11) leukemia

Abstract

The chromosomal translocation t(4;11)(q21;q23) is a frequent genetic aberration of the mixed lineage leukemia (MLL) gene, predominantly associated with high-risk acute lymphoblastic leukemia (ALL) in pediatric patients. Previous studies demonstrated that mice transplanted with hematopoietic cells expressing the AF4-MLL fusion protein develop proB ALL. The AF4-MLL oncoprotein becomes activated by Taspase1-mediated hydrolysis, which subsequently leads to a heterodimer of the cleavage products AF4-MLL·N and MLL·C. This protein-protein interaction is due to the FYRN and FYRC interaction domains present in both protein fragments. Heterodimerization subsequently induces high-molecular-weight protein complex formation that is protected against SIAH1/2-mediated polyubiquitinylation. Here, we attempted to selectively block this initial heterodimerization step, aiming to prevent the oncogenic activation of the AF4-MLL multiprotein complex. The minimal interaction interface was experimentally defined first in a bacterial two-hybrid system, and then in mammalian cells by using a biosensor assay. Expression of the FYRC domain, or smaller portions thereof, resulted in the inhibition of heterodimer formation, and blocked AF4-MLL multiprotein complex formation with subsequent destruction of the AF4-MLL oncoprotein. Thus, it is in principle possible to specifically target the AF4-MLL protein. This knowledge can now be exploited to design inhibitory decoys in order to destroy the AF4-MLL oncoprotein.

Keywords

Oncogene Proteins, Fusion, Chromosomes, Human, Pair 11, Immunoblotting, Nuclear Proteins, Histone-Lysine N-Methyltransferase, Precursor Cell Lymphoblastic Leukemia-Lymphoma, Translocation, Genetic, Protein Structure, Tertiary, DNA-Binding Proteins, Humans, Chromosomes, Human, Pair 4, Protein Multimerization, Transcriptional Elongation Factors, Biologie, Myeloid-Lymphoid Leukemia Protein, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Average
Top 10%
Top 10%
bronze